

Rocky Flats Environmental Technology Site

RECONNAISSANCE LEVEL CHARACTERIZATION REPORT (RLCR)

SECURITY CLUSTER CLOSURE PROJECT

(Buildings 550, 761, 901, 762, 762A, 792, 792A)

REVISION 0

April 10, 2001

2001 RECEIVED RECORDS CENTER Superceded disted philosonis

165

ADMINISTRACED

IA-A-000858

RECONNIAISSANCE LEVEL CHARACTERIZATION REPORT (RLCR)

SECURITY CLUSTER CLOSURE PROJECT REVISION 0

April 10, 2001

Reviewed by:	Steve Luker, Quality Assurance	_ Date: <u>4/2/6</u> ,
Reviewed by:	Joe Mahaffey, Radiological Engineering N	_ Date: <u><i>4-160</i></u> ^{Manager}
Reviewed by:	Methodo Lock Daniers Kevin Daniels, RISS ESH&Q Manager	_ Date: <u>4/12/64</u>
Approved by:	JR Marschall, K-H Project Manager	_ Date: <u>4/17/0</u> /

9

TABLE OF CONTENTS

A	BBREVIATIONS/ACRONYMS	IV
1	INTRODUCTION	6
	1.1 PURPOSE	6
2	HISTORICAL SITE ASSESSMENT	
3	RADIOLOGICAL CHARACTERIZATION AND HAZARDS	7
	3.1 RADIOLOGICAL CHARACTERIZATION	7
4	CHEMICAL CHARACTERIZATION AND HAZARDS	
	4.1 CHEMICAL CHARACTERIZATION	8
	compounds (VOCs & SVOCs)]	8 9
	4.2.1 Asbestos	9 9
5	PHYSICAL HAZARDS	10
6	DATA QUALITY ASSESSMENT	10
7	DECOMMISSIONING WASTE TYPES AND VOLUME ESTIMATES	11
8	FACILITY CLASSIFICATION AND CONCLUSIONS	11
9	REFERENCES	12
	ATTACHMENTS Facility Location Man	
A B C D E F G	Radiological Characterization Package Chemical Characterization Package Radiological Data Summaries and Survey Maps Chemical Data Summaries and Sample Maps Decommissioning Waste Types And Volume Estimates	

ABBREVIATIONS/ACRONYMS

ACM Asbestos containing material

Be Beryllium

CDPHE Colorado Department of Public Health and the Environment

DCGL_{EMC} Derived Concentration Guideline Level – elevated measurement comparison

DCGLw Derived Concentration Guideline Level – Wilcoxon Rank Sum Test

D&D Decontamination and Decommissioning

DDCP Decontamination and Decommissioning Characterization Protocol

DOE U.S. Department of Energy
DPP Decommissioning Program Plan

DQA Data quality assessment DQOs Data quality objectives

EPA U.S. Environmental Protection Agency
FDPM Facility Disposition Program Manual
HVAC Heating, ventilation, air conditioning
HSAR Historical Site Assessment Report
IHSS Individual Hazardous Substance Site
IWCP Integrated Work Control Package

K-H Kaiser-Hill
LBP Lead-based paint
LLW Low-level waste

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual

MDA Minimum detectable activity
MDC Minimum detectable concentration
NORM Naturally occurring radioactive material

NRA Non-Rad-Added Verification

OSHA Occupational Safety and Health Administration

PARCC Precision, accuracy, representativeness, comparability and completeness

PCBs Polychlorinated Biphenyls
PDS Pre-demolition survey
OC Quality Control

RCRA Resource Conservation and Recovery Act

RFCA Rocky Flats Cleanup Agreement

RFETS Rocky Flats Environmental Technology Site

RFFO Rocky Flats Field Office

RLC Reconnaissance Level Characterization

RLCR Reconnaissance Level Characterization Report

RSP Radiological Safety Practices SVOCs Semi-volatile organic compounds

TSA Total surface activity

VOCs Volatile organic compounds

EXECUTIVE SUMMARY

A Reconnaissance Level Characterization (RLC) was performed to enable facility "Typing" per the DPP (10/8/98) and compliant disposition and waste management of facilities 550, 761, 901, 762, 762A, 792, and 792A (a.k.a. Security Cluster). Because these facilities were anticipated to be Type 1 facilities, the characterization was performed in accordance with the Pre-Demolition Survey Plan (MAN-127-PDSP). All facilities surfaces were characterized in this RLC, including the interior and exterior surfaces of the facilities (i.e., floors (slabs), walls, ceilings and roofs). Environmental media beneath and surrounding the facilities were not within the scope of this RLC Report (RLCR) and will be addressed using the Soil Disturbance Permit process.

The RLC encompassed both radiological and chemical characterization to enable compliant disposition and waste management pursuant to the D&D Characterization Protocol (MAN-077-DDCP). The characterization built upon physical, chemical and radiological hazards identified in the facility specific Historical Site Assessment Reports.

Results indicate that no radiological contamination exists in excess of the prescribed release limits of DOE Order 5400.5. The roof flashing materials of Buildings 762 and 792 contain asbestos, in both friable and non-friable form. Fluorescent light ballasts that may contain PCBs. PCB ballasts and asbestos containing materials will be removed and disposed of in compliance with Environmental Protection Agency (EPA) and Colorado Department of Public Health and Environment (CDPHE) regulations. Painted facility surfaces may contain PCBs. All demolition debris will be managed in compliance with regulations governing PCBs (40 CFR 761), and Environmental Compliance Guidance #27, Lead-Based Paint (LBP) and Lead-Based Paint Debris Disposal as applicable.

Based upon this RLCR and subject to concurrence by the Colorado Department of Public Health and Environment (CDPHE), the Security Cluster facilities are considered to be Type 1 facilities. To ensure that the facilities remain free of contamination and that RLC data remain valid, isolation controls will be established, and the facilities will be posted accordingly.

1 INTRODUCTION

A Reconnaissance Level Characterization (RLC) was performed to enable compliant disposition and waste management of facilities 550, 761, 901, 762, 762A, 792, and 792A (a.k.a. Security Cluster). Because these facilities were anticipated to be Type 1 facilities, a PDS characterization was performed. All facilities surfaces were characterized in this RLC include the interior and exterior surfaces of the facilities (i.e., floors (slabs), walls, ceilings and roofs). Environmental media beneath and surrounding the facilities were not within the scope of this RLC Report (RLCR) and will be addressed using the Soil Disturbance Permit process.

As part of the Rocky Flats Environmental Technology Site (RFETS) Closure Project, numerous facilities will be removed. Among these are the Security Cluster facilities. The locations of these facilities are shown in Attachment A. These facilities no longer support the RFETS mission and need to be removed to reduce Site infrastructure, risks and/or operating costs.

Before the facilities can be removed, a Pre-Demolition Survey (PDS) must be conducted; this document presents the PDS results. The PDS was conducted pursuant to the Decontamination and Decommissioning Characterization Protocol (MAN-077-DDCP) and the Pre-Demolition Survey Plan for D&D Facilities (MAN-127-PDSP). The PDS built upon physical, chemical and radiological hazards identified in the facility specific Historical Site Assessment Reports.

1.1 Purpose

The purpose of this report is to communicate and document the results of the RLC effort. PDSs are performed before building demolition to define the final radiological and chemical conditions of a facility. Final conditions are compared with the release limits for radiological and non-radiological contaminants. PDS results will enable project personnel to make final disposition decisions, develop related worker health and safety controls, and estimate waste volumes by waste types.

1.2 Scope

This report presents the final radiological and chemical conditions of the Security Cluster facilities. Environmental media beneath and surrounding the facilities are not within the scope of this RLCR and will be addressed using the Soil Disturbance Permit process. Both facilities and environmental media will be dispositioned pursuant to the Rocky Flats Cleanup Agreement (RFCA).

1.3 Data Quality Objectives

The Data Quality Objectives (DQOs) used in designing this RLC were the same DQOs identified in the Pre-Demolition Survey Plan for D&D Facilities (MAN-127-PDSP). Refer to section 2.0 of MAN-127-PDSP for these DQOs.

2 HISTORICAL SITE ASSESSMENT

Facility specific Historical Site Assessments (HSAs) were conducted to understand facility histories and related hazards. The assessment consisted of facility walkdowns, interviews, and document review, including review of the Historical Release Report (refer to the D&D Characterization Protocol, MAN-077-DDCP). Results were used to identify data gaps and needs, and to develop radiological and chemical characterization packages. Results of the facility specific HSAs were documented in facility specific Historical Site Assessment Reports (HSAR). Refer to the Security Cluster Characterization Project Files for copies of the HSARs. In summary, the HSARs did not identify any known radiological or chemical hazards. Asbestos Containing Material may have been used during construction of the facilities.

3 RADIOLOGICAL CHARACTERIZATION AND HAZARDS

3.1 Radiological Characterization

Radiological characterization was performed to define the nature and extent of radioactive materials that may be present on or in the facilities. Measurements were performed to evaluate the contaminants of concern. Based on facility history, building walkdowns, and MARSSIM guidance, the facilities were broken down into survey areas, survey units, and classifications. A Radiological Characterization Package (refer to Attachment B) was developed during the planning phase that describes how the facilities were broken-down into survey units, the justification for the survey unit classifications, and the minimum sampling requirements per survey unit.

Radiological survey unit packages were developed for each survey unit in accordance with Radiological Safety Practices (RSP) 16.01, "Radiological Survey/Sampling Package Design, Preparation, Control, Implementation and Closure." Total Surface Activity (TSA), removable and scan measurements were collected in accordance with RSP 16.02 "Radiological Surveys of Surfaces and Structures." Radiological survey data were verified, validated and evaluated in accordance with RSP 16.04, "Radiological Survey/Sample Data Analysis." Quality Control measures were implemented thorough the survey and sampling process in accordance with RSP 16.05, "Radiological Survey/Sample Quality Control."

Radiological data, statistical analysis results, and survey locations are presented in Attachment D, Radiological Data Summaries and Survey Maps. Radiological survey packages are maintained in the Security Cluster Characterization Project files.

3.2 Radiological Hazards Summary

The RLC (serving also as the Pre-Demolition Survey) confirmed that the Security Cluster facilities (i.e., all interior and exterior facility surfaces) do not contain radiological contamination above the surface contamination guidelines provided in DOE Order 5400.5 and the RFETS Radiological Control Manual. Isolation control postings are displayed at all entrances to the Security Cluster facilities to ensure no radioactive materials are introduced.

4 CHEMICAL CHARACTERIZATION AND HAZARDS

4.1 Chemical Characterization

Chemical characterization was performed to determine the nature and extent of chemical contamination that may be present on or in the Security Cluster facilities. Based upon a review of historical and process knowledge, visual inspections, and PDSP DQOs, additional sampling needs were determined. A Chemical Characterization Package (refer to Attachment C) was developed during the planning phase that describes sampling requirements and the justification for the sample locations and estimated sample numbers. Contaminants of concern included asbestos and beryllium. Refer to Attachment E, Chemical Summary Data and Sample Maps, for details on sample results and sample locations.

4.1.1 Asbestos

Based on limited historical asbestos inspection data, an asbestos inspection and sampling of suspect asbestos containing material (ACM) was required for PDS. A CDPHE-certified asbestos inspector conducted the inspection and sampling in accordance with PRO-563-ACPR *Asbestos Characterization Protocol*, Revision 0. Potential ACM was identified for sampling at the discretion of the inspector.

Portals 762 and 792 are identical in construction and built at the same time. Samples collected in Portal 792 are considered representative of materials in Portal 762 and vice versa.

4.1.2 Beryllium

Based on the HSAR, there was no record of beryllium operations in the facilities, nor was there adequate information to conclude the absence of beryllium in the facilities, therefore limited biased sampling was performed in each facility.

4.1.3 RCRA/CERCLA Constituents [including metals and volatile and semi-volatile organic compounds (VOCs & SVOCs)]

Based on the HSAR, there was no record of RCRA/CERCLA constituent operations or storage in the Security Cluster, therefore RCRA/CERCLA constituent sampling was not performed.

Sampling for lead in paint in the Security Cluster was not required. Environmental Waste Compliance Guidance #27, Lead-based Paint (LBP) and Lead-based paint Debris Disposal, states that LBP debris generated outside of currently identified high contamination areas shall be managed as non-hazardous (solid) wastes, and additional analysis for characteristics of hazardous waste derived from LBP is not a requirement for disposal.

4.1.4 Polychlorinated Biphenyls (PCBs)

Based on the HSAR, there was no record of PCB operations or storage in the Security Cluster, therefore PCB sampling was not performed. The Security Cluster facilities contain fluorescent light ballasts that may contain PCBs. Therefore, fluorescent light

fixtures will be inspected to identify PCB ballasts during removal operations. PCB ballasts will be identified based on factors such as labeling (e.g., PCB-containing and non-PCB-containing), manufacturer, and date of manufacturing. All ballasts that do not indicate non-PCB-containing are assumed to be PCB-containing.

Historical data and process knowledge give no reason to suspect that any specialized paints or coatings containing PCBs were applied to any of the painted surfaces within the Security Cluster facilities. However, Environmental Waste Compliance Guidance #25, Management of Polychlorinated Biphenyls (PCBs) in Paint and Other Bulk Product Waste During Facility Disposition, has directed that applied dried paints, varnishes, waxes, or other similar coatings or sealants are acceptable for disposal (with notification) in a non-hazardous solid waste landfill as PCB Bulk Product Waste under 40 CFR 761.3 and 40 CFR 761.62 paragraph (b), and therefore, need not be sampled as long as restrictions outlined in 40 CFR 761.62 regarding their disposition are met. Current plans are to dispose of demolition debris from the Security Cluster in an off-site, non-hazardous solid waste landfill as PCB Bulk Product Waste.

4.2 Chemical Hazards Summary

Each facility was sampled for the presence of asbestos-containing material (ACM) and beryllium.

4.2.1 Asbestos

The only area found to contain ACM was the roof flashing material of Buildings 762 and 792, in both friable and non-friable form. The asbestos containing felt in the roof flashing material is not tar impregnated and is considered friable. Asbestos containing materials will be removed and disposed of in compliance with Environmental Protection Agency (EPA) and Colorado Department of Public Health and Environment (CDPHE) regulations. Asbestos sample data and sample location maps are contained in Attachment E, Chemical Summary Data and Sample Maps. Estimated quantities of ACM are presented in Attachment F, Decommissioning Waste Types and Volume Estimates.

4.2.2 Beryllium

Beryllium sample results of the Security Cluster facilities were all less than $0.1 \, \mu g/100 cm^2$. Beryllium sample data and sample location maps are contained in Attachment E, Chemical Summary Data and Sample Maps.

4.2.3 RCRA/CERCLA Constituents

Based on the HSAR, there was no record of RCRA/CERCLA constituent operations or storage in the Security Cluster, therefore RCRA/CERCLA constituents do not present a chemical hazards in the Security Cluster.

4.2.4 PCBs

PCB ballasts may be found in the Security Cluster and will be removed and disposed of in accordance with site procedures prior to building demolition. It is not suspected that any specialized paints or coatings containing PCBs were applied to painted surfaces within the Security Cluster facilities, however, plans are to dispose of demolition debris in an off-site, non-hazardous solid waste landfill as PCB Bulk Product Waste.

5 PHYSICAL HAZARDS

Physical hazards associated with the Security Cluster facilities consist of those common to standard industrial environments and include hazards associated with energized systems, utilities, and trips and falls. There are no unique hazards associated with the facilities. The facilities have been relatively well maintained and are in good physical condition, and therefore, do not present hazards associated with building deterioration. Physical hazards are controlled by the Site Occupational Safety and Industrial Hygiene Program, which is based on OSHA regulations, DOE orders, and standard industry practices.

6 DATA QUALITY ASSESSMENT

Data used in making management decisions for decommissioning of the Security Cluster, and consequent waste management, are of adequate quality to support the decisions documented in this report. The data presented in this report (Attachments A-G) were verified and validated relative to DOE quality requirements, applicable EPA guidance, and original DQOs of the project.

Adequate data quality for decision-making is required by the Kaiser-Hill Team Quality Assurance Program (K-H, 1997, §7.1.4 and 7.2.2), the DOE (Order O 414.1, Quality Assurance, §4.b.(2)(b)), and the Regulators (EPA Region VIII and the CDPHE). The data and consequent environmental decisions must be technically and legally defensible. Verification and validation (V&V) of the data, in concert with the DQO process, ensure that data used in decisions resulting from the PDS are usable and defensible.

V&V of the data are the primary components of the DQA, and are detailed in the Security Cluster Characterization Project File under the file header "DQA". A summary of the decisions and uncertainties resulting from the DQO process specific to this project are displayed in Attachment G, Table G-1. DQA for radiological data drew heavily from guidance provided in the MARSSIM (NUREG-1575), as displayed in Attachment G, Table G-2, and Radiological Safety Practices (RSPs) 16.04 and 16.05. V&V of non-radiological data drew from a number of requirements and guidance documents, including EPA QA/G-4 (EPA, 1994) and QA/G-9 (EPA, 1998). Other applicable guidance and requirements documents are referenced within the Security Cluster Characterization Project Files.

In summary, the V&V process corroborates that the following elements of the characterization process are adequate:

- the *number* of samples and surveys;
- the *types* of samples and surveys;
- the sampling/survey process, in the field; and,
- the laboratory analytical process, relative to accuracy and precision considerations.

7 DECOMMISSIONING WASTE TYPES AND VOLUME ESTIMATES

The demolition and disposal of the Security Cluster will generate a variety of wastes. Attachment F presents the estimated waste volumes and waste type by facility. All wastes can be disposed of as sanitary waste, except asbestos containing material and PCB Bulk Product Waste. There is no radioactive or hazardous waste. Asbestos and PCB ballasts will be managed pursuant to Site asbestos and PCB abatement and waste management procedures.

8 FACILITY CLASSIFICATION AND CONCLUSIONS

Based on the analysis of radiological, chemical and physical hazards, the Security Cluster facilities (i.e., 550, 761, 901, 762, 762A, 792, and 792A) are classified as RFCA Type 1 facilities pursuant to the RFETS Decommissioning Program Plan (DPP; K-H, 1999). The Type 1 classification is based on a review of historical and process knowledge, and newly acquired RLC data, and will be subject to concurrence by the Colorado Department of Public Health and the Environment (CDPHE).

The RLC of the Security Cluster was performed in accordance with the DDCP and PDSP; all PDSP DQOs were met, and all data satisfied the PDSP DQA criteria. These facilities do not contain radiological or hazardous wastes. All demolition debris will be managed in compliance with regulations governing PCBs (40 CFR 761), as applicable, in accordance with the Decommissioning Program Plan, Section 3.3.5. PCB ballasts and asbestos containing material will be removed and disposed of in compliance with EPA and CDPHE regulations. Environmental media beneath and surrounding the facilities will be addressed using the Soil Disturbance Permit process.

To ensure that the Type 1 facilities remain free of contamination and that RLC data remain valid, isolation controls have been established, and the facilities are posted accordingly.

9 REFERENCES

ANSI-N323A-1997, Radiation Protection Instrumentation Test and Calibration.

DOE/RFFO, CDPHE, EPA, 1996. Rocky Flats Cleanup Agreement (RFCA), July 19, 1996.

DOE Order 5400.5, "Radiation Protection of the Public and the Environment."

DOE Order 414.1A, "Quality Assurance."

EPA, 1994. "The Data Quality Objective Process," EPA QA/G-4.

K-H, 1997. "Kaiser-Hill Team Quality Assurance Program", Rev. 5, December, 1997.

K-H, 1998. Facility Disposition Program Manual, MAN-076-FDPM, Rev. 1, September 1999.

K-H, 1999. Decontamination and Decommissioning Characterization Protocol, MAN-077-DDCP, Rev. 1, June 19, 2000.

K-H, 1999. Decommissioning Program Plan, June 21, 1999.

K-H, 2000. Pre-Demolition Survey Plan, MAN-127-PDSP, Rev. 0, March 26, 2001.

MARSSIM - Multi-Agency Radiation Survey and Site Investigation Manual, December 1997 (NUREG-1575, EPA 402-R-97-016).

PRO-475-RSP-16.01, Radiological Survey/Sampling Package Design, Preparation, Control, Implementation, and Closure, September 30, 1999.

PRO-476-RSP-16.02, Radiological Surveys of Surfaces and Structures, September 30, 1999.

PRO-477-RSP-16.03, Radiological Samples of Building Media, September 30, 1999.

PRO-478-RSP-16.04, Radiological Survey/Sample Data Analysis, September 30,1999.

PRO-479-RSP-16.05, Radiological Survey/Sample Quality Control, September, 30, 1999

RFETS, Environmental Waste Compliance Guidance #25, Management of Polychlorinated Biphenyls (PCBs) in Paint and Other Bulk Product Waste During Facility Disposition.


RFETS, Environmental Waste Compliance Guidance #27, Lead-Based Paint (LBP) and Lead-Based Paint Debris Disposal.

RFETS, Historical Site Assessment Reports for Buildings 762, 762A, 792, 792A, 550, 761, and 901.

ATTACHMENT A

Facility Location Map

ATTACHMENT B

Radiological Characterization Package

Rocky Flats Environmental Technology Site

RADIOLOGICAL CHARACTERIZATION PACKAGE

SECURITY CLUSTER CLOSURE PROJECT

REVISION 0

March 1, 2001

Prepared by:	Jay M. Britten /	AMBUTEN 2/27/01.
Reviewed by:	Duane Parsons /	RISS Facility Characterization Coordinator
Reviewed by:	Steve Luker /	Quality Assurance 3/1/01.
Approved by:	Vern Guthrie /	VIM X tithing 3/1/01.

Radiological Characterization Package Security Cluster (B762, B762A, B792, B792A, 550, 761, and 901)

JMB		
<u>≤</u> ::		
itial		
므		
800		
8		
me:		
F		
28/01		
27.		
Date:		
ed:		
pdat		
Last U		
La		
luster		
Irity C		
Secu		
ling		
uilc		
(1)		

- This characterization package was prepared in accordance with MAN-077-DDCP, D&D Characterization Protocols(07/26/00), and MAN-127-PDSP, Pre-Demolition Survey Plan for D&D Facilities (02/14/01)
- * PDSP Data Quality Objectives were used to develop this characterization package.

Instructions:

- Verify characterization activities are on the Plan-of-the-Day (POD).
- 2. Perform a Pre-Evolution Brief and/or Job Task Brief in accordance with the Site Conduct of Operations Manual
- 3. Verify personnel have appropriate training for the applicable tasks they will be performing.
- 4. Comply with RWP requirements, if applicable.
- 5. Comply with JHA and facility PPE requirements, as applicable.
- 6. Inform the Facility Manager, or designee prior to starting characterization activities.
- 7. Follow applicable characterization and sampling procedures.
- 8. Notify Wackenhut Security (x2444) and the Shift Supervisor (x2914), and verify appropriate safety precautions/requirements are followed prior to accessing facility roofs.
- 9. Coordination with the Environmental Restoration Program organization will be required to further characterize underneath facility foundations and slabs prior to
- 10. Collect and maintain all characterization paperwork in the Project File(s).
- 11. All radiological surveys shall be conducted in accordance with the sampling and instruction forms included in Security Cluster Package Identification numbers 01-0006, 01-0007, and 01-0008. Sample locations are denoted on scaled maps attached to each survey package.

	TSA Smears Media Class Justification	No Class 1 Areas identified in this characterization unit.	N/A Historical Site Assessment and process knowledge indicate no	need for this classification.	0
	Me		z		
	Smears		A/N		0
	TSA		ΑN		0
	Scan m²		ΑX		0
:	Floor m²	v" - - 	N/A		0
	lotal ⊯ m².		N/A		0
	Description		Ϋ́Ν		Class 1 Totals
	Slass		ν V V		
Areas	Survey Unit		A/N		
Class 1 Ar	Survey Area		N/A		

			Ra Security Clust	adiolog ter (B76	iical Ch 32, B762	aracter 2A, B79	ization 2, B792	adiological Characterization Package ter (B762, B762A, B792, B792A, 550, 761, and 901)	, 761, an	1 901)
Class 2 Areas	eas									
Survey Area	Survey Unit	Class	Description	Total m²	Floor m²	Scan m²	TSA	Smears	Media	Smears Media Class Justification.
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	No Class 2 Areas identified in this characterization unit. Historical Site Assessment and process knowledge indicate no need for this classification.
			Class 2 Totals	0	0	O	0	0	0	

			Radiol	ogical	Charac	teriza	Radiological Characterization Package	kage		
			Security Cluster (B	762, B	762A, E	3792,	uster (B762, B762A, B792, B792A, 550, 761, and 901)	50, 761,	and 901	
Class 3 Areas	eas									
		***************************************				Scan				
e	Survey Unit	O		Ε				Smears	Media	Class Justification
∢	SEC-A-001	ო	Interior of B762, B762A, B792, and B792A	1820	516	182	15-random	15-random	o	Areas are not expected to contain, or have ever contained, any residual radioactivity greater than the
								Fifteen total		October 1 described and season and process DCGL _W Historical Site Assessment and process
								sample		knowledge of this unit provide a high degree of
							points per	points per		confidence that no individual measurement will
							building	building		exceed the DCGL _W . A 10% scan will be biased
							2	2		towards areas or greater potential for contamination (e.g., floors and lower walls). Additional biased
										measurements have been prescibed and will be
										collected to ensure all building surfaces are
					-					adequately characterized. These additional biased
										measurements are above and beyond requirements set forth in the RFETS PDSP.
4	SEC-A-002	ဗ	Interiors of B550, B761, and B901	661	98	29	15-random	15-random	0	Areas are not expected to contain, or have ever
			[1st Floor - Walls, Floor, Ceiling]				30-biased	30-biased		contained, any residual radioactivity greater than the
			[2nd Floor - Walls, Floor, & Ceiling]				_	Fifteen total		DCGL _{w.} Historical Site Assessment and process
			[3rd Floor - Walls, Floor, & Ceiling]	-				samble		knowledge of this unit provide a high degree of
							points per	points per		confidence that no individual measurement will
							building	building		exceed the DCGL _w . A 10% scan will be biased
							Interior	Interior		towards areas of greater potential for contamination
										(e.g., floors and lower walls). Additional biased
										measurements have been prescibed and will be
		7								collected to ensure all building surraces are adequately characterized. These additional hissed
										adequately distanted and and beyond requirements
										set forth in the RFETS PDSP.
В	SEC-B-003	9	Exterior of B762, B762A, B792, and	2613	137	262	15-random	15-random	0	Areas are not expected to contain, or have ever
			B792A [including roof], AND Exterior of				90-biased	90-biased		contained, any residual radioactivity greater than the
			bood, byot, boot [including root]				sample	sample		DOCEW, distorical one Assessment of this unit
							points per	points per		individual measurement will exceed the DCGL A
							building	puilding		_
						-	exterior	exterior	-	potential for contamination (e.g., lower walls & roof
										areas). Additional biased measurements have been
										prescibed and will be collected to ensure all building
										additional biased measurements are above and
										beyond requirements set forth in the RFETS PDSP.
			Class 3 Totals	5094	739	511	210	210	0	
0 1 4	A 1.2.2.4		21 Chat T 22012	7004	720	773	086	0.50		
All Class Areas	Areas		All class Totals	2034	<u>چ</u>	100	710	710		

^{*} Larger numbers of biased TSA and Removable sample locations provided to adequately characterize facility surfaces.

			Smears Media Class Justification	No Non-Impacted Areas identified in this characterization unit. Historical Site Assessment	and process knowledge indicate no need for this classification.	
	ind 901)		Media		N/A	0
age	er (B762, B762A, B792, B792A, 550, 761, and 901)		Smears		V	0
on Pack	92A, 55		TSA		Ψ Ž	0
Radiological Characterization Package	3792, B7		Scan m²		N/N	0
Sharac	62A, E		Floor m²		N/A	
ogical (3762, B7		Total m²		N/A	0
Radiol	Security Cluster (E		noildinosed		N/A	Non-Impacted Totals
		S	Class		N/A	
	:	Non-Impacted Areas	Survey Unit		N/A	
		Non-Impa	Survey Area		N/A	

ATTACHMENT C

Chemical Characterization Package

Rocky Flats Environmental Technology Site

CHEMICAL CHARACTERIZATION PACKAGE

SECURITY BUILDING CLUSTER CLOSURE PROJECT

REVISION 1

February 20, 2001

Prepared by: _	Industrial Hygiene
Prepared by:	Musel
	Environmental Compliance
Reviewed by: _	Quality Assurance
Reviewed by: _	1 - 1/21/01
	RISS Facility Characterization Coordinator
Approved by:)//han (2/23/01
	Closure Project Facility Manager

CHEMICAL CHARACTERIZATION PACKAGE

BUILDING(s): SECURITY CLUSTER (550, 761, 901, 762, 762A, 792, 792A)

- * This characterization package was prepared in accordance with MAN-077-DDCP, D&D Characterization Protocols, and MAN-127-PDSP, Pre-Demolition Survey Plan for D&D Facilities.
- * PDSP Data Quality Objectives were used to develop this characterization package.

Instructions:

- 1. Verify characterization activities are on the Plan-of-the-Day (POD).
- 2. Perform a Pre-Evolution Brief and/or Job Task Brief in accordance with the Site Conduct of Operations Manual.
- 3. Verify personnel have appropriate training for the applicable tasks they will be performing.
- 4. Comply with RWP requirements, if applicable.
- 5. Comply with JHA and facility PPE requirements, as applicable.
- 6. Inform the Facility Manager, or designee poor to starting characterization activities.
- 7. Follow applicable characterization and same and procedures.
- 8. Notify Wackenhut Security (x2444) and the lift Supervisor (x2914), and verify appropriate safety precautions/requirements are followed prior to accessing facility roofs.
- 9. Coordination with the Environmental Restoration Program organization will be required to further characterize underneath facility foundations and shape prior to removal.
- 10. Collect and maintain all characterization paperwork in the Project File(s), and all electronic data in the appropriate D&D RISS subdirectory.

ASBESTOS		
Sample Location	Estimated Number of Samples	Sample location and justification/rational
550, 761 & 901	10 per building	Asbestos inspections have not been performed. As a result, a comprehensive invasive inspection must be performed in accordance with PRO-563-ACPR, Asbestos Characterization Procedure. Suspect materials include drywall, base cove, floor insulation and roof.
762 & 792	11 per building	Asbesto inspections have not been performed. As a result, a comprehensive invasive inspection must be performed in accordance with PRO-563-ACPR, Assestos Characterization Procedure. Suspect materials include window caulking, roof and flashing, ceiling tile, floor tile, base cove and drywall.
762A & 792A	24 per building	Asbestos inspections have not been performed. As a result, a comprehensive invasive inspection must be performed in accordance with PRO-563-ACPR, Asbestos Characterization Procedure. Suspect materials include ceiling tile, drywall, base cove, roof and flashing, pipe insulation, linoleum, exterior soffit texture, transite, window caulking.
Total Samples:	100	The exact sample numbers and locations will not be determined until a comprehensive, invasive inspection is performed in accordance with 40 CFR Part 763, Subpart E. Sample locations will be specified on sample maps during characterization efforts. Samples will be obtained in accordance with PkU-653-ACPR, Asbestos Characterization Procedure and 40 CFR 763.

BERYLLIUM		
Sample Location	Number of Samples (smears)	Sample location and justification/rational
550, 761, 901, 762, 762A, 792, 792A	14 – biased	There is no documented supporting data or process history that proves beryllium was not used or stored in these buildings. Therefore, two biased

		samples from each of the seven building will be obtained. Buildings have similar history and can be treated as one area.
Total Samples:	14	Samples will be obtained at locations specified on sample map(s) in accordance with PRO-536-BCPR, Beryllium Characterization Procedure. Biased sample locations will correspond with the most probable areas of dust accumulation (including beryllium dust), assuming airborne deposition.

LEAD		
Sample Location	Number of Samples	Sample location and justification/rational
Security Cluster, all locations	0	Lead sampling is not required for Security Cluster buildings. All paint will remain a part of the infrastructure during demolition and therefore does not require sampling per Environmental Waste Compliance Guidance No. 27, Lead Based Paint (LBP) and LBP Debris Disposal. In addition, these buildings were constructed in 1982, 1983, and 1989, and lead based paint is not probable. Sampling for lead for IH requirements will be at the discretion of the demolition contractor.
Total Samples:	0	

RCRA/CERCLA CO	NSTITIUENTS	
Sample Location	Number of Samples	Sample location and justification/rational
Security Cluster	0	No hazardous activities that may have resulted in RCRA or CERCLA constituents occurred in the Security Cluster buildings, therefore sampling for RCRA/CERCLA constituents is not required. Note: These buildings do contain materials that may need to be managed as Regulated Waste during D&D activities including mercury thermostats, fluorescent light bulbs, circuit boards, and HVAC systems. Care will need to be taken to ensure these wastes are managed properly.
Total Samples:	0	

Sample Location	Number of Samples	Sample location and justification/rational
Security Cluster	0	The Security Cluster buildings were constructed in 1982, 1983, and 1989. PCB contamination in the structural debris is not probable. No sampling is required. Note: These buildings do contain materials that may need to be managed as Regulated Waste during D&D activities, such as light ballasts. Care will need to be taken to ensure these wastes are managed properly.
Total Samples:	0	

* PCB ballasts, fluorescent light bulbs, potential mercury switches in thermostats, and mercury vapor light bulbs shall be removed prior to demolition.

24

ATTACHMENT D

Radiological Data Summaries and Survey Maps

SURVEY UNIT DATA SUMMARY: SEC-A-001

Survey Unit Descripton: Interior of 762, 762A, 792 and 792A

Survey Unit SEC-A-001 Data Summary

Total Surface	Activity Mea	surements	Remova	ble Activity	Measurements
	60	60		60	60
	Number Required	Number Obtained		Number Required	Number Obtained
MIN	-11.7	dpm/100 cm²	MIN	-0.9	dpm/100 cm²
MAX	26.4	dpm/100 cm ²	MAX	9.1	dpm/100 cm ²
MEAN	0.9	dpm/100 cm ²	MEAN	1.2	dpm/100 cm ²
STD DEV	8.3	dpm/100 cm ²	STD DEV	2.2	dpm/100 cm ²
TRANSURANIC DCGL _W	100	dpm/100 cm ²	TRANSURANIC DCGL _W	20	dpm/100 cm²

Survey Unit SEC-A-001 Total Surface Activity Results

Manufacturer:	NE Electra						
Model:	DP-6						
Instrument ID#:	7	8	11	12	19	34	35
Serial #;	3114	1546	1546	1366	3114	1241	1546
Cal Due Date:	5/6/01	5/3/01	5/3/01	5/6/01	5/6/01	8/26/01	5/3/01
Analysis Date:	3/26/01	3/26/01	3/27/01	3/27/01	3/27/01	3/29/01	3/29/01
Alpha Eff. (c/d):	0.22	0.228	0.228	0.204	0.22	0.214	0.228
Alpha Bkgd (cpm)	2.0	2.0	0.7	0.7	0.0	0.7	1.3
Sample Time (min)	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LAB Time (min)	1.5	1.5	1.5	1.5	1,5	1.5	1.5
MDC (dpm/100cm²)	33.5	32.3	22.7	25.4	9.1	24.2	27.8

Sample Location Number	instrument ID#:	Sample Gross Counts (cpm)	LAB Gross Counts (cpm)	Sample Net Activity (dpm/100cm2)
1	11	2.7	2.0	-2.5
2	11	3.3	3.3	0.1
3	35	2.0	0.7	-5.6
4	11	9.3	2.7	26.4
5	35	2.0	0.7	-5.6
6	12	2.7	3.4	-2.8
7	11	2.7	2.0	-2.5
8	35	4.0	2.7	3.2
9	11	4.7	2.0	6.3
10	35	6.0	4.0	12.0
11	11	2.7	4.7	-2.5
12	35	2.0	2.7	-5.6
13	35	1.3	3.3	-8.7
14	12	3.3	2.7	0.1
15	12	2.0	1.3	-6.2
16	35	2.7	2.0	-2.5
17	35	1.3	2.0	-8.7
18	7	4.7	4.0	6.5
19	8	2.7	0.7	-2.5
20	19	0.7	4.7	-11.7
21	11	0.7	1,3	-11.3
22	11	3.3	4.0	0.1
23	19	4.7	4.0	6.5
24	35	2.0	5.3	-5.6
25	35	4.7	0.7	6.3
26	35	1.3	2.0	-8.7
27	35	2.7	2.0	-2.5
28	35	2.7	5.3	-2.5
29	35	1.3	2.7	-8.7
30	35	2.7	1.3	-2.5
	7			-9.0
31		1.3	4.7	
32	7	4.0	4.7	3.3
33	8	7.3	2.7	17.7
34	8	3.4	3.3	0.6
35	8	0.7	3.3	-11.3
36	8	2.0	1.3	-5.6
37	7	6.7	3.3	15.6
38	7	3.3	8.0	0.1
39	7	0.7	7.3	-11.7
40	8	3.3	1.3	0.1
41	8	3.3	0.7	0.1
42	7	4.7	4.0	6.5
43	7	5.3	7.3	9.2
44	11	2.7	2.0	-2.5
45	19	6.0	7.3	12.4
46	11	2.7	0.7	-2.5

Survey Unit SEC-A-001 Total Surface Activity Results

Manufacturer:	NE Electra						
Model:	DP-6						
Instrument ID#:	7	8 .	11	12	19	34	35
Serial #:	3114	1546	1546	1366	3114	1241	1546
Cal Due Date:	5/6/01	5/3/01	5/3/01	5/6/01	5/6/01	8/26/01	5/3/01
Analysis Date:	3/26/01	3/26/01	3/27/01	3/27/01	3/27/01	3/29/01	. 3/29/01
Alpha Eff. (c/d):	0.22	0.228	0.228	0.204	0.22	0.214	0.228
Alpha Bkgd (cpm)	2.0	2.0	0.7	0.7	0.0	0.7	1.3
Sample Time (min)	1.5	1,5	1.5	1.5	1.5	1.5	1.5
LAB Time (min)	1.5	1.5	1.5	1.5	1.5	1.5	1.5
MDC (dpm/100cm²)	33.5	32.3	22.7	25.4	9.1	24.2	27.8

Sample Location Number	Instrument ID#:	Sample Gross Counts (cpm)	LAB Gross Counts (cpm)	Sample Net Activity (dpm/100cm2)
48	19	4.0	4.7	3,3
49	12	3.4	5.4	0.6
50	11	8.0	3.3	20.7
51	11	2.7	2.0	-2.5
52	11	2.7	0.7	-2.5
53	11	4.0	3.3	3.2
54	11	4.7	3.3	6.3
55	19	4.7	7.0	6.5
56	19	4.0	5.3	3.3
57	19	1.3	0.7	-9.0
58	19	6.0	3.3	12.4
59	19	4.7	6.3	6.5
60	19	6.0	4.7	12.4
			Average LAB	3.3
			MIN	-11.7
			MAX	26.4
			MEAN	0.9
			SD	8.3
			Transuranic DCGL _w	100

Average LAB	3.3
MIN	-11.7
MAX	26.4
MEAN	0.9
SD	8.3
Transuranic DCGL _w	100

QC DATA

QC-2	7	7.3	6.0	18.3
QC-3	12	4.7	1.3	7.0
QC-10	34	0.7	2.0	-12.0
-		-	Average LAB	3.1
			MIN	-12.0
			MAX	18.3
			MEAN	4.4
			SD	15.3
			Transuranic DCGL _w	100

Survey Unit SEC-A-001 Smear Results

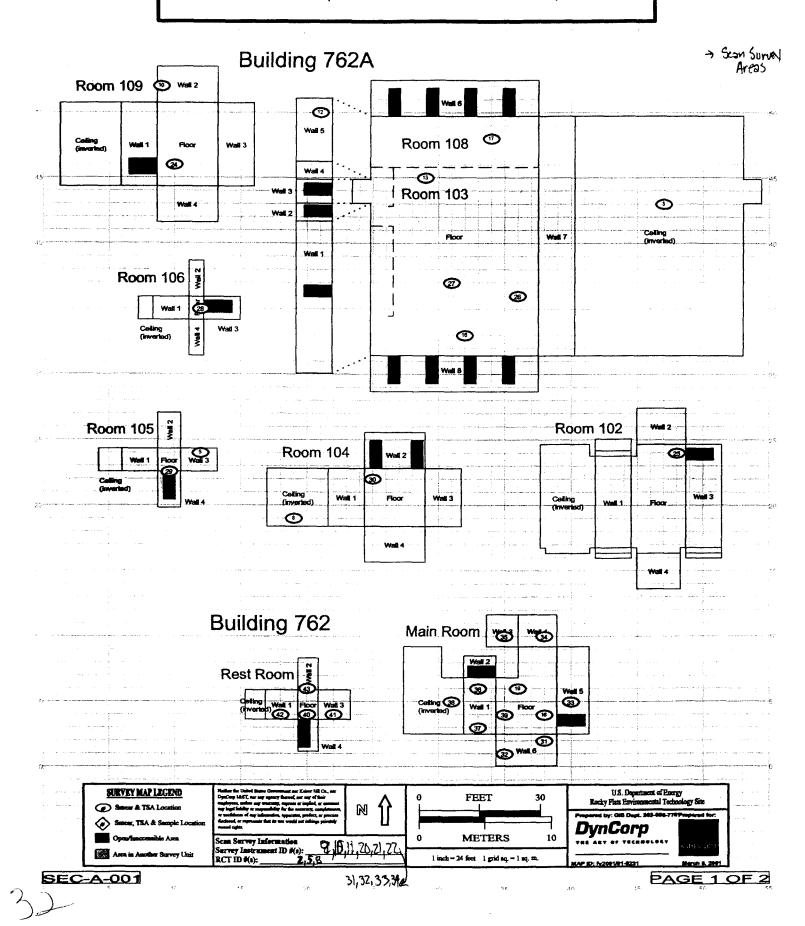
SAC-4 SAC-4 SAC-4 SAC-4 SAC-4 SAC-4 SAC-4 SAC-4 SAC-4 1			1	1 1 1 1 1		44,744				
SAC-4 TIS TIS<	Manufacturer:	Eberline	Eperline	Eperline	Eperine	Ebenine	Eperime	Epenine	Epenine	Eperline
1 2 3 4 13 830 833 1157 770 830 8/12/01 7/23/01 8/27/01 7/18/01 8/12/01 3/28/01 3/28/01 3/28/01 3/28/01 3/29/01 0,33 0,33 0,33 0,33 0,0 0 0 0 0 0 0 2 2 2 2 2 2 10 10 10 10 10	Model:	SAC-4	SAC-4	SAC-4	SAC-4	SAC-4	SAC-4	SAC-4	SAC-4	SAC-4
830 833 1157 770 830 8/12/01 7/23/01 8/27/01 7/18/01 8/12/01 3/28/01 3/28/01 3/28/01 3/28/01 3/28/01 0.33 0.33 0.33 0.33 0 0 0 0.33 0.0 2 2 2 2 2 10 10 10 10 10	Instrument ID#:	1	2	3	4	13	14	15	16	25
8/12/01 7/23/01 8/27/01 7/18/01 8/12/01 3/28/01 3/28/01 3/28/01 3/28/01 3/28/01 0.33 0.33 0.33 0.33 0 0 0 0.3 2 2 2 2 10 10 10 10	Serial #:	830	833	1157	770	830	833	1157	770	1157
3/28/01 3/28/01 <t< th=""><th>Cal Due Date:</th><th>8/12/01</th><th>7/23/01</th><th>8/27/01</th><th>7/18/01</th><th>8/12/01</th><th>7/23/01</th><th>8/27/01</th><th>7/18/01</th><th>8/27/01</th></t<>	Cal Due Date:	8/12/01	7/23/01	8/27/01	7/18/01	8/12/01	7/23/01	8/27/01	7/18/01	8/27/01
0.33 0.33 0.33 0.33 0 0 0 0 0.0 2 2 2 2 2 10 10 10 10 10	Analysis Date:	3/28/01	3/28/01	3/28/01	3/28/01	3/29/01	3/29/01	3/29/01	3/29/01	3/26/01
0 0 0 0.3 0.0 2 2 2 2 2 10 10 10 10 10	Alpha Eff. (c/d):	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Sample Time (min) 2 2 2 2 2 2 Bkgd Time (min) 10 10 10 10 10	Alpha Bkgd (cpm)	0	0	0	0.3	0.0	0.0	0.0	0.1	0.1
Bkgd Time (min) 10 10 10 10 10 10	Sample Time (min)	2	2	2	2	2	2	2	2	2
	Bkgd Time (min)	10	10	10	10	10	10	10	10	10
MDC (dpm/100cm²) 4.5 4.5 8.8 4.5 4.5 4.5	MDC (dpm/100cm²)	4.5	4.5	4.5	8.8	4.5	4.5	4.5	7.0	7.0

Sample Location		Gross counts	,
Number	Instrument ID#	(cbm)	(dpm/100 cm ²)
-	က	0.0	0.0
2	က	0.0	0.0
က	13	0.0	0.0
4	3	1.0	3.0
2	16	1.0	2.7
9	4	0.0	6'0-
	2	0.0	0:0
8	15	0.0	0.0
6	2	2.0	6.1
10	4	1.0	3.0
11	-	0.0	0.0
12	15	0.0	0.0
13	16	1.0	2.7
4!	2	1.0	3.0
15	-	0.0	0.0
16	13	0.0	0:0
17	14	0.0	0.0
18	15	3.0	9.1
19	16	2.0	5.8
20	4	0.0	6.0-
21	2	0.0	0.0
22	4	0.0	6.0-
23	2	1.0	3.0
24	15	0.0	0.0
25	15	1.0	3.0
26	16	0.0	-0.3
27	13	2.0	6.1
28	13	0.0	0.0
29	14	0.0	0.0
30	13	1.0	3.0
31	15	1.0	3.0
32	25	0.0	-0.3
33	25	0.0	-0.3
34	16	1.0	2.7
35	25	0.0	-0.3
36	16	2.0	5.8
37	13	0.0	0.0
38	15	1.0	3.0
39	14	0.0	0.0
40	25	0.0	-0.3
41	16	1.0	2.7
		0.0	

Survey Unit SEC-A-001 Smear Results

Manufacturer:	Eberline								
Model:	SAC-4								
Instrument ID#:	-	2	3	4	13	14	15	16	25
Serial #:	830	833	1157	770	088	833	1157	770	1157
Cal Due Date:	8/12/01	7/23/01	8/27/01	7/18/01	8/12/01	7/23/01	8/27/01	7/18/01	8/27/01
Analysis Date:	3/28/01	3/28/01	3/28/01	3/28/01	3/29/01	3/29/01	3/29/01	3/29/01	3/26/01
Alpha Eff. (c/d):	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Alpha Bkgd (cpm)	О	0	0	0.3	0.0	0.0	0.0	0.1	0.1
Sample Time (min)	2	2	2	2	2	2	2	2	2
Bkgd Time (min)	10	10	10	10	10	10	10	10	10
MDC (dpm/100cm ²)	4.5	4.5	4.5	8.8	4.5	4.5	4.5	0.7	7.0

														_											
Net Activity	(dpm/100 cm ²)	-0.3	-0.9	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	0.0	0.0	3.0	-0.9	0.0	0.0	6.0-	9.1	1.2	2.2		20
Gross Counts	(cpm)	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	NIM	MAX	MEAN	SD	Transuranic	DUGLW
	Instrument ID#	25	4	1	2	-	2	က		8	-	1	4	က	2	-	4	ဇ	2						
Sample Location	Number	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	29	90						

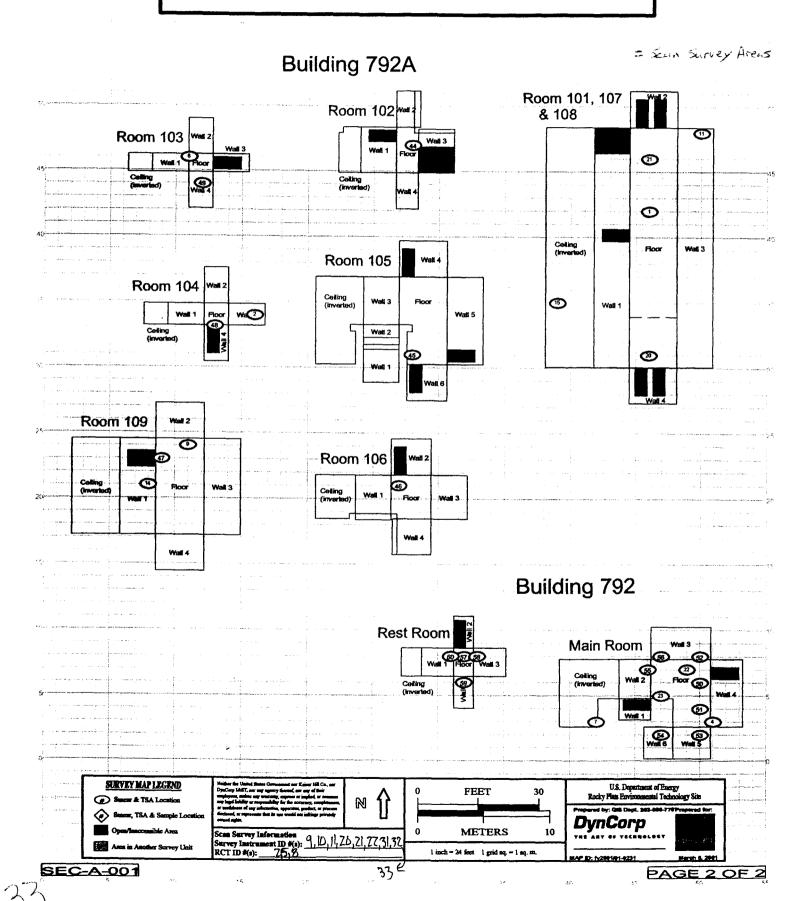


Survey Unit: SEC-A-001

Survey Area: A Survey U Building: 762, 762A, 792, 792A Survey Unit Description: Interiors Total Area: 1820 sq. m.

Total Floor Area: 516 sq. m.

Classification: 3


FIGE-DEMOLITION SURVEY FOR SECURITY CLUSIER

Survey Unit: SEC-A-001

Survey Area: A Survey Un Building: 762, 762A, 792, 792A Survey Unit Description: Interiors Total Area: 1820 sq. m.

Classification: 3

Total Floor Area: 516 sq. m.

SURVEY UNIT DATA SUMMARY: SEC-A-002

Survey Unit Descripton: Interior of 550, 761 and 901

Survey Unit SEC-A-002 Data Summary

Total Surface	Activity Mea	surements	Removable Activity Measurements					
	45	45		45	45			
	Number Required	Number Obtained		Number Required	Number Obtained			
MIN	-7.7	dpm/100 cm²	MIN	-0.6	dpm/100 cm²			
MAX	57.6	dpm/100 cm ²	MAX	6.1	dpm/100 cm ²			
MEAN	15.9	dpm/100 cm ²	MEAN	0.4	dpm/100 cm ²			
STD DEV	14.1	dpm/100 cm²	STD DEV	1.8	dpm/100 cm ²			
TRANSURANIC DCGL _W	100	dpm/100 cm²	TRANSURANIC DCGL _W	20	dpm/100 cm ²			

Survey Unit SEC-A-002 Total Surface Activity Results

Manufacturer:	NE Electra					
Model:	DP-6	DP-6	DP-6	DP-6	DP-6	DP-6
Instrument ID#:	7	8	9	10	11	12
Serial #:	1254	1366	1254	N/A	N/A	N/A
Cal Due Date:	5/20/01	5/6/01	5/20/01	N/A	N/A	N/A
Analysis Date:	3/20/01	3/20/01	3/20/01	N/A	N/A	N/A
Alpha Eff. (c/d):	0.227	0.204	0.227	N/A	N/A	N/A
Alpha Bkgd (cpm)	2.0	2.0	2.0	N/A	N/A	N/A
Sample Time (min)	1.5	1.5	1,5	N/A	N/A	N/A
LAB Time (min)	1.5	1.5	1.5	N/A	N/A	N/A
MDC (dpm/100cm²)	32.5	36.2	32.5	N/A	N/A	N/A

				
Sample Location Number	Instrument ID#:	Sample Gross Counts (cpm)	LAB Gross Counts (cpm)	Sample Net Activity (dpm/100cm2)
1	8	5,3	4.0	14.9
2	8	4.0	1.3	8.5
3	8	3.3	2.7	5.1
4	8	10.7	3.3	41.4
5	8	4.0	1.3	8.5
6	8	1.3	1.3	-4.8
7		6.0	2.0	16.4
8	7	6.7	2.7	19.5
9	7	8.0	4.0	25.3
10	8	6.0	2.0	18.3
11	8	4.7	7.3	11.9
12	. 8	7.3	3.3	24.7
13	8	3.3	2.0	5.1
14	7	5.3	1.3	13.4
15	8	2.6	2.0	1.6
16	8	2.7	2.7	2.1
17	7	9.3	2.0	31.0
18	7	1.3	4.0	-4.3
19	7	1.3	2.7	-4.3
20	7	5.3	1.3	13.4
21	8	3.3	2.0	5.1
22	8	9.3	2.0	34.5
23	7	4.7	2.0	10.7
24	8	4.0	1.3	8.5
25	8	6.7	2.7	21.8
26	7	12.0	1.3	42.9
27	7	12.7	3.3	46.0
28	8	14.0	0.7	57.6
29	8	5.3	2.0	14.9
30	7	3.3	0.7	4.5
31	8	3.3	2.7	5.1
32	8	8.0	2.0	28.2
33	7	4.0	3.3	7.6
34	7	6.7	1.3	19.5
35	7	6.0	2.0	16.4
36	7	7.3	3.3	22.2
37	8	7.3	2.0	24.7
38	8	0,7	3.3	-7.7

Survey Unit SEC-A-002 Total Surface Activity Results

Manufacturer:	NE Electra					
Model:	DP-6	DP-6	DP-6	DP-6	DP-6	DP-6
Instrument ID#:	7	8	9	10	11	12
Serial #:	1254	1366	1254	N/A	N/A	N/A
Cal Due Date:	5/20/01	5/6/01	5/20/01	N/A	N/A	N/A
Analysis Date:	3/20/01	3/20/01	3/20/01	N/A	N/A	N/A
Alpha Eff. (c/d):	0.227	0.204	0.227	N/A	N/A	N/A
Alpha Bkgd (cpm)	2.0	2.0	2.0	N/A	N/A	N/A
Sample Time (min)	1.5	1.5	1.5	N/A	N/A	N/A
LAB Time (min)	1.5	1.5	1.5	N/A	N/A	N/A
MDC (dpm/100cm ²)	32.5	36.2	32.5	N/A	N/A	N/A

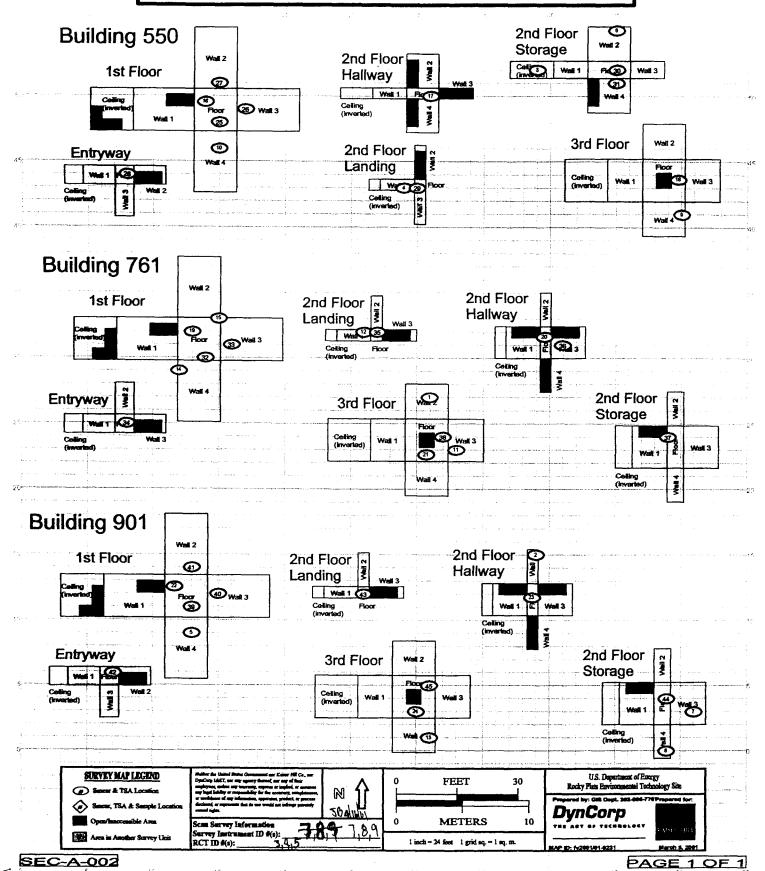
Sample Location Number	Instrument ID#;	Sample Gross Counts (cpm)	LAB Gross Counts (cpm)	Sample Net Activity (dpm/100cm2)
39	8	6.0	1.3	18.3
40	8	6.7	1.3	21.8
41	8	7.3	0.7	24.7
42	8	2.7	2.0	2.1
43	8	4.0	0.7	8.5
45	7	5.3	2.7	13.4
			Average LAB	2.3
			MIN	-7.7
			MAX	57.6
			MEAN	15.9
			SD	14.1
			Transuranic DCGL _W	100
QC DATA				
QC-23	9	3.3	2.0	5.7
QC-9	9	4.7	3.3	11.9
QC-35	9	8.0	0.7	26.4

QC DATA				
QC-23	9	3.3	2.0	5.7
QC-9	9	4.7	3.3	11.9
QC-35	9	8.0	0.7	26.4
			Average LAB	2.0
			MIN	5.7
			MAX	26.4
			MEAN	14.7
			SD	10.6
			Transuranic DCGL _W	100

Survey Unit SEC-A-002 Smear Results

Manufacturer:	Eberline	Eberline	Eberline	Eberline	Eberline	Eberline
Model:	SAC-4	SAC-4	SAC-4	SAC-4	SAC-4	SAC-4
Instrument ID#:	1	2	3	4	5	6
Serial #:	767	833	830	N/A	N/A	N/A
Cal Due Date:	4/11/01	7/23/01	8/12/01	N/A	N/A	N/A
Analysis Date:	3/20/01	3/20/01	3/20/01	N/A	N/A	N/A
Alpha Eff. (c/d):	0.33	0.33	0.33	N/A	N/A	N/A
Alpha Bkgd (cpm)	0.2	0	0.2	N/A	N/A	N/A
Sample Time (min)	2	2	2	N/A	N/A	N/A
Bkgd Time (min)	10	10	10	N/A	N/A	N/A
MDC (dpm/100cm ²)	8.0	4.5	8.0	N/A	N/A	N/A

Sample Location		Gross Counts	Net Activity
Number	Instrument ID#	(cpm)	(dpm/100 cm²)
1	2	0.0	0.0
2	3	0.0	-0.6
3	3	2.0	5.5
4	2	0.0	0.0
5	3	0.0	-0.6
6	2	0.0	0.0
7	2		
8	1	0.0	0.0
9	1	0.0	-0.6 2.4
10	3	1,0 0.0	-0.6
11	1	1.0	2.4
12	2	0.0	0.0
13	3	0.0	-0.6
14	3	1.0	2.4
15	3	0.0	-0.6
16	2		0.0
17	3	0.0	-0.6
18	3		
19	<u> </u>	0.0	-0.6 -0.6
20	1 1	0.0	-0.6
20	1	0.0	-0.6
22	1		2.4
23	2	1.0	
23	1	0.0	0.0 -0.6
25	1	0.0	-0.6
25	3	0.0	-0.6
27	2	0.0	0.0
28	1	1.0	2.4
29	1	0.0	-0.6
30	. — — '	0.0	-0.6
31	2	0,0	0.0
32	2	1.0	3.0
33	3	0.0	-0.6
34	1	0.0	-0.6
35	2	2.0	6.1
36	2	0.0	0.0
37	3	0.0	-0.6
38	3	0.0	-0.6
39	3	0.0	-0.6
40	1	0.0	-0.6
41	2	0.0	0.0
42	2	0.0	0.0
43	1	2.0	5.5
44	3	0.0	-0.6
45	2	0.0	0.0
	<u> </u>	MIN	-0,6
		MAX	6.1
		MEAN	0.4
		SD	1.8
		Transuranic	
		DCGL _W	20


DEMOLITION SURVEY FOR SECURITY CLUS <

Classification: 3

Survey Area: A Survey Unit: SEC-A-002
Building: 550, 761, 901
Survey Unit Description: Interiors (1st floor < 8 ft.)
Total Area: 661 sq. m. Total F

Total Floor Area: 86 sq. m.

= Scan SURVEY Areas

SURVEY UNIT DATA SUMMARY: SEC-B-003

Survey Unit Descripton:

Exterior of 762, 762A, 792, 792A, 550, 761 and 901

Survey Unit SEC-B-003 Data Summary

Total Surface Activity Measurements			Remova	ble Activity	Measurements
	105	105		105	105
	Number Required	Number Obtained		Number Required	Number Obtained
MIN	-18.7	dpm/100 cm²	MIN	-0.9	dpm/100 cm ²
MAX	96.2	dpm/100 cm ²	MAX	9.1	dpm/100 cm ²
MEAN	23.4	dpm/100 cm ²	MEAN	1.2	dpm/100 cm ²
STD DEV	25.0	dpm/100 cm ²	STD DEV	2.3	dpm/100 cm ²
TRANSURANIC DCGL _W	100	dpm/100 cm²	TRANSURANIC DCGL _W	20	dpm/100 cm²

Survey Unit SEC-B-003 Total Surface Activity Results

Manufacturer:	NE Electra					
Model:	DP-6	DP-6	DP-6	DP-6	DP-6	DP-6
Instrument ID#:	7	8	10	11	12	19
Serial #:	1546	1254	1366	3114	1546	1254
Cal Due Date:	5/3/01	5/20/01	5/6/01	5/6/01	5/3/01	5/20/01
Analysis Date:	3/21/01	3/21/01	3/21/01	3/22/01	3/22/01	3/22/01
Alpha Eff. (c/d):	0.228	0.227	0.204	0.22	0.228	0.227
Alpha Bkgd (cpm)	2.0	0.7	1.3	2.7	2.0	2.0
Sample Time (min)	1.5	1.5	1.5	1.5	1.5	1.5
LAB Time (min)	1.5	1.5	1.5	1.5	1.5	1.5
MDC (dpm/100cm²)	32.3	22.8	31.0	37.5	32.3	32.5

Manufacturer:	NE Electra						
Model:	DP-6						
Instrument ID#:	21	22	23	24	31	32	33
Serial #:	3114	1546	3114	1546	3114	1546	1241
Cal Due Date:	5/6/01	5/3/01	5/6/01	5/3/01	5/6/01	5/3/01	8/26/01
Analysis Date:	3/23/01	3/23/01	3/26/01	3/26/01	3/27/01	3/27/01	3/28/01
Alpha Eff. (c/d):	0.22	0.228	0.22	0.228	0.220	0.228	0.214
Alpha Bkgd (cpm)	0.7	1.3	2.0	2.0	0.0	0.7	0.7
Sample Time (min)	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LAB Time (min)	1.5	1.5	1.5	1.5	1.5	1.5	1.5
MDC (dpm/100cm ²)	23.5	27.8	33.5	32.3	9,1	22.7	24.2

	J			
Sample Location Number	instrument ID#:	Sample Gross Counts (cpm)	LAB Gross Counts (cpm)	Sample Net Activity (dpm/100cm2)
1	12	8.0	2.7	17.1
22	33	2.0	2.7	-9.8
3	33	21.3	10.7	80.4
4	22	7.7	2.7	15.8
5	11	4.0	2.0	-0,5
6	7	14.7	8.7	46.5
7	12	2.0	4.4	-9.2
8	19	4.0	4.7	-0.5
9	21	11.3	6.0	32.7
10	11	7.3	2.7	14.5
11	21	12.0	2.7	35.9
12	33	15.3	2.0	52.3
13	32	5.3	3,3	5.2
14	23	8.0	2.7	17.7
15	10	8.0	2.7	19.1
16	19	14.7	4.0	46.7
17	8	12.0	4.7	34.8
18	8	20.7	7.3	73.1
19	11	0.0	0.7	-18.7
20	12	2.0	3.3	-9.2
21	12	3.3	0.7	-3.5
22	12	4.0	4.7	-0.5
23	11	6.7	2.0	11.8
24	12	4.0	3.3	-0.5
25	11	2.0	1.3	-9.6
26	12	6.7	3.3	11.4
27	11	4.0	2.0	-0.5
28	12	7.3	4.7	14.0
29	11	4.0	2.0	-0.5
30	33	15.3	1.3	52.3
31	33	7.3	2.7	14.9
32	12	2.0	4.7	-9.2
33	11	3.3	1.3	-3.7
34	11	1.4	1.3	-12.3
35	12	9.3	2.7	22.8
36	19	8.0	4.7	17.2
37	11	6.7	2.7	11.8
38	12	5.3	4.0	5.2
39	11	3.3	2.7	-3.7
40	12	4.0	6.0	-0.5
41	11	2.7	3.3	-6.4
41	12	2.7	6.0	-6.2
43	33	16.0	0.7	55.6

Survey Unit SEC-B-003 Total Surface Activity Results

Manufacturer:	NE Electra					
Model:	DP-6	DP-6	DP-6	DP-6	DP-6	DP-6
Instrument ID#:	7	8	10	11	12	19
Serial #:	1546	1254	1366	3114	1546	1254
Cal Due Date:	5/3/01	5/20/01	5/6/01	5/6/01	5/3/01	5/20/01
Analysis Date:	3/21/01	3/21/01	3/21/01	3/22/01	3/22/01	3/22/01
Alpha Eff. (c/d):	0.228	0.227	0.204	0.22	0.228	0.227
Alpha Bkgd (cpm)	2.0	0.7	1.3	2.7	2.0	2.0
Sample Time (min)	1.5	1.5	1.5	1.5	1.5	1.5
LAB Time (min)	1.5	1.5	1.5	1.5	1.5	1.5
MDC (dpm/100cm²)	32.3	22,8	31,0	37.5	32.3	32.5

Manufacturer:	NE Electra						
Model:	DP-6						
Instrument ID#:	21	22	23	24	31	32	33
Serial #:	3114	1546	3114	1546	3114	1548	1241
Cal Due Date:	5/6/01	5/3/01	5/6/01	5/3/01	5/6/01	5/3/01	8/26/01
Analysis Date:	3/23/01	3/23/01	3/26/01	3/26/01	3/27/01	3/27/01	3/28/01
Alpha Eff. (c/d):	0.22	0.228	0.22	0.228	0.220	0.228	0.214
Alpha Bkgd (cpm)	0.7	1.3	2.0	2.0	0.0	0.7	0.7
Sample Time (min)	1.5	1,5	1.5	1.5	1.5	1.5	1.5
LAB Time (min)	1.5	1.5	1.5	1.5	1.5	1.5	1,5
ADC (dpm/100cm²)	23.5	27.8	33.5	32.3	9,1	22.7	24.2

				<u> </u>
Sample Location Number	Instrument ID#:	Sample Gross Counts (cpm)	LAB Gross Counts (cpm)	Sample Net Activi (dpm/100cm2)
44	24	6.0	3.3	8.3
45	24	4.7	2.0	2.6
46	23	6.7	2.0	11.8
47	24	12.7	1.3	37.7
48	21	11.3	5.3	32.7
49	23	6.0	4.0	8.6
50	23	5.3	4.0	5,4
51	19	4.0	1.3	-0.5
52	33	22.0	10.7	83.6
53	33	24.7	10.7	96.2
54	22	4.0	0.7	-0.5
55	22	6.7	2.7	11.4
56	21	22.7	4.7	84.5
57	33	21.3	6.7	80.4
58	33	22.3	6.7	85.0
59	33	22.7	7.3	86.9
60	21	4.7	6.0	2.7
61	31	6.0	6.7	8.6
62	22	5.3	4.0	5.2
63	21	12.7	3.3	39.1
64	21	6.7	8.7	11.8
65	21	12.0	6.0	35.9
66	11	9.3	3.3	23.6
67	11	11.3	2.7	32.7
68	12	9.3	2.7	22.8
69	12	8.7	2.0	20.2
70	12	11.3	8.7	31.6
71	11	12.0	4.7	35.9
72	12	8.0	4.7	17.1
73	11	12.7	2.7	39.1
74	12	10.0	2.7	25.9
75	11	5.3	4.7	5.4
76	11	9.3	2.7	23.6
77	11	7.7	3.3	16.3
78	12	12.7	6.0	37.7
79	11	9.3	2.7	23.6
80	7	12.7	3.3	37.7
81	7	8.7	4.0	20.2
82	10	10.7	5.3	32.3
83	10	6.7	6.D	12.7
84	7	8.0	5.3	17.1
85	10	14.7	5.3	51.9
86	10	10.7	6.0	32.3

Survey Unit SEC-B-003 Total Surface Activity Results

Manufacturer:	NE Electra					
Model:	DP-6	DP-6	DP-6	DP-6	DP-6	DP-6
Instrument ID#:	7	8	10	11	12	19
Serial #:	1546	1254	1366	3114	1546	1254
Cal Due Date:	5/3/01	5/20/01	5/6/01	5/6/01	5/3/01	5/20/01
Analysis Date:	3/21/01	3/21/01	3/21/01	3/22/01	3/22/01	3/22/01
Alpha Eff. (c/d):	0.228	0.227	0.204	0.22	0.228	0.227
Alpha Bkgd (cpm)	2.0	0.7	1.3	2.7	2.0	2.0
Sample Time (min)	1.5	1.5	1.5	1.5	1.5	1.5
LAB Time (min)	1.5	1.5	1.5	1.5	1.5	1.5
MDC (dpm/100cm ²)	32.3	22.8	31.0	37.5	32.3	32.5

Manufacturer:	NE Electra						
Model:	DP-6						
Instrument ID#:	21	22	23	24	31	32	33
Serial #:	3114	1546	3114	1546	3114	1546	1241
Cal Due Date:	5/6/01	5/3/01	5/6/01	5/3/01	5/6/01	5/3/01	8/26/01
Analysis Date:	3/23/01	3/23/01	3/26/01	3/26/01	3/27/01	3/27/01	3/28/01
Alpha Eff. (c/d):	0.22	0.228	0.22	0.228	0.220	0.228	0.214
Alpha Bkgd (cpm)	0.7	1.3	2.0	2.0	0.0	0.7	0.7
Sample Time (min)	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LAB Time (min)	1.5	1.5	1,5	1.5	1.5	1.5	1,5
MDC (dpm/100cm²)	23.5	27.8	33.5	32.3	9,1	22.7	24.2

Sample Location Number	instrument ID#:	Sample Gross Counts (cpm)	LAB Gross Counts (cpm)	Sample Net Activity (dpm/100cm2)
87	10	6.7	7.3	12.7
88	10	8,0	4.0	19.1
89	10	17.3	3,3	64.7
90	7	6.7	4.7	11.4
91	10	7.3	4.0	15.7
92	10	6.0	2.7	9.3
93	10	12.0	2.7	38.7
94	7	10.0	7.3	25.9
95	10	13.3	4.0	45.1
96	7	15.3	6,0	49.1
97	10	9.3	2.7	25.5
98	7	9.3	8.0	22.8
99	7	18.0	6.0	60.9
100	10	7.3	2.7	15.7
101	7	6.0	3.3	8.3
102	7	14.7	4.0	46.5
103	7	7.3	4.0	14.0
104	7	9.3	3.3	22.8
105	7	14.0	5.3	43.4

 Average LAB
 4.1

 MIN
 -18.7

 MAX
 96.2

 MEAN
 23.4

 SD
 25.0

 Transuranic DCGLw
 100

ററ	DATA

QC-2	10	8.7	2.7	20.9
QC-3	10	12.0	1.3	35.9
QC-3	12	13.3	8	40.5
QC-3	19	8.0	7.3	17.2
QC-3	11	6.0	2.7	8.3
QC-10	11	4.0	2.7	-0.5

 Average LAB
 4.1

 MIN
 -0.5

 MAX
 40.5

 MEAN
 20.4

 SD
 15.7

 Transuranic DCGL_W
 100

Survey Unit SEC-B-003 Smear Results

Manufacturer:	Eberline						
Model:	SAC-4						
Instrument ID#:	1	2	3	4	5	6	13
Serial #:	830	833	767	770	830	833	767
Cal Due Date:	8/12/01	7/23/01	4/11/01	7/18/01	8/12/01	7/23/01	4/11/01
Analysis Date:	3/21/01	3/21/01	3/21/01	3/21/01	3/21/01	3/21/01	3/23/01
Alpha Eff. (c/d):	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Alpha Bkgd (cpm)	0.1	0.2	0.2	0.1	0.2	0.0	0.3
Sample Time (min)	2	2	2	2	2	2	2
Bkgd Time (min)	10	10	10	10	10	10	10
MDC (dpm/100cm ²)	7.0	8.0	8.0	7.0	8.0	4.5	8.8

Manufacturer:	Eberline						
Model:	SAC-4						
Instrument ID#:	14	17	18	25	26	27	28
Serial #:	770	830	833	830	833	1157	770
Cal Due Date:	7/18/01	8/12/01	7/23/01	8/12/01	7/23/01	8/27/01	7/18/01
Analysis Date:	3/23/01	3/26/01	3/26/01	3/29/01	3/29/01	3/29/01	3/29/01
Alpha Eff. (c/d):	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Alpha Bkgd (cpm)	0.2	0	0.1	0.0	0.0	0.0	0.1
Sample Time (min)	2	2	2	2	2	2	2
Bkgd Time (min)	10	10	10	10	10	10	10
MDC (dpm/100cm ²)	8.0	4.5	7.0	4.5	4.5	4.5	7.0

Sample Location		Gross Counts	Net Activity
Number	Instrument ID#	(cpm)	(dpm/100 cm ²)
1	13	0.0	-0.9
2	28	2.0	5.8
3	26	0.0	0.0
4	14	1.0	2.4
5	6	0.0	0.0
6	1	0.0	-0.3
7	13	1.0	2.1
8	26	0.0	0.0
9	5	1.0	2.4
10	14	1.0	2.4
11	14	0.0	-0.6
12	2	0.0	-0.6
13	17	1.0	3,0
14	25	0.0	0.0
15	1	0.0	-0.3
16	5	0.0	-0.6
17	3	0.0	-0.6
18	4	0.0	-0.3
19	5	0.0	-0.6
20	6	0.0	0.0
21	5	1.0	2.4
22	6	0.0	0.0
23	13	0.0	-0.9
24	14	1.0	2.4
25	15	0.0	0.0
26	6	0,0	0.0
27	5	0.0	-0.6
28	5	0.0	-0.6
29	14	0.0	-0.6
30	3	0.0	-0.6
31	4	0.0	-0.3
32	14	2.0	5.5
33	14	0.0	-0,6
34	5	2.0	5.5
35	13	0.0	-0.9
36	6	0.0	0.0
37	14	0.0	-0.6
38	13	1.0	2.1
39 40	6	1.0	3.0
	14	0.0	-0.6
41	5	2.0	5.5
43	13	0.0	-0.9
44	1 10	2.0	5,8
45	18 17	0.0	-0.3 0.0
46	25	0.0	0.0
47	18	1.0	2.7
48	6	0.0	0.0
49	17	0.0	0.0
50	17	1.0	3.0
51	27	0.0	0.0
52	27	1.0	3.0
53	25	3.0	9.1
54	13	0.0	-0.9
55	6	1.0	3.0
56	5	0.0	-0.6
57	28	1.0	2.7
58	25	2.0	6.1
59	26	1.0	3.0
60	5	0.0	-0.6
61	18	1.0	2.7
62	6	1.0	3.0
63	13	2.0	5.2
64	14	1.0	2.4
65	13	0.0	-0.9
66	5	0.0	-0.6
67	14	0.0	-0.6
68	13	1.0	2.1
69	6	0.0	0.0
70	5	0.0	-0.6

Survey Unit SEC-B-003 Smear Results

Manufacturer:	Eberline						
Model:	SAC-4						
Instrument ID#:	1	2	3	4	5	6	13
Serial #:	830	833	767	770	830	833	767
Cal Due Date:	8/12/01	7/23/01	4/11/01	7/18/01	8/12/01	7/23/01	4/11/01
Analysis Date:	3/21/01	3/21/01	3/21/01	3/21/01	3/21/01	3/21/01	3/23/01
Alpha Eff. (c/d):	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Alpha Bkgd (cpm)	0.1	0.2	0.2	0.1	0.2	0.0	0.3
Sample Time (min)	2	2	2	2	2	2	2
Bkgd Time (min)	10	10	10	10	10	10	10
MDC (dpm/100cm ²)	7.0	8.0	8.0	7.0	8.0	4.5	8.8

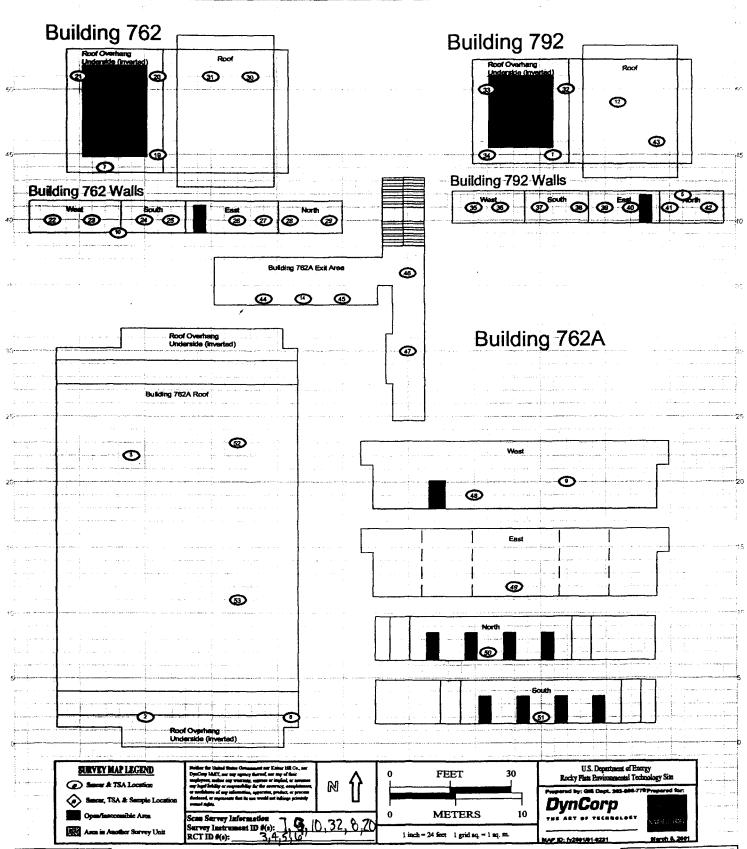
Manufacturer:	Eberline						
Model:	SAC-4						
Instrument ID#:	14	17	18	25	26	27	28
Serial #:	770	830	833	830	833	1157	770
Cal Due Date:	7/18/01	8/12/01	7/23/01	8/12/01	7/23/01	8/27/01	7/18/01
Analysis Date:	3/23/01	3/26/01	3/26/01	3/29/01	3/29/01	3/29/01	3/29/01
Alpha Eff. (c/d):	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Alpha Bkgd (cpm)	0.2	0	0.1	0.0	0.0	0.0	0.1
Sample Time (min)	2	2	2	2	2	2	2
Bkgd Time (min)	10	10	10	10	10	10	10
MDC (dpm/100cm ²)	8.0	4.5	7.0	4.5	4.5	4.5	7.0

mbo (aprili tocom)	0.0	4.5	7.0
Sample Location		Gross Counts	Net Activity
Number	Instrument ID#	(cpm)	(dpm/100 cm ²)
71	5	2.0	5.5
72	13	0.0	-0.9
73	14	2.0	5.5
74	5	0.0	-0.6
75	14	0.0	-0.6
76	6	0.0	0.0
77	6	0.0	0.0
78	13	D,D	-0.9
79	6	1.0	3.0
80	3	1.0	2.4
81	4	0,0	-0.3
82	1	0.0	-0.3
83	4	0.0	-0.3
84	2	1.0	2.4
85	3	0.0	-0.6
86	2	0.0	-0.6
87	2	1.0	2.4
88	2	1.0	2.4
89	1	0.0	-0.3
90	3	2.0	5.5
91	4	0.0	-0.3
92	1	0.0	-0.3
93	1	1.0	2.7
94	2	0.0	-0.6
95	3	0.0	-0.6
96	4	2.0	5.8
97	2	0.0	-0.6
98	3	0.0	-0.6
99	4	0.0	-0.3
100	2	0,0	-0.6
101	1	0.0	-0.3
102	1	1.0	2.7
103	2	1.0	2.4
104	3	1.0	2.4
105	4	2.0	5.8
	· · · · · · · · · · · · · · · · · · ·	MIN	-0.9
		MAX	9.1
		MEAN	1.2
		SD	2.3
		Transuranic	

DCGL_W 20

Survey Area: B Survey Unit: SEC-B-003

Building: 762, 762A, 792, 792A, 550, 761, 901

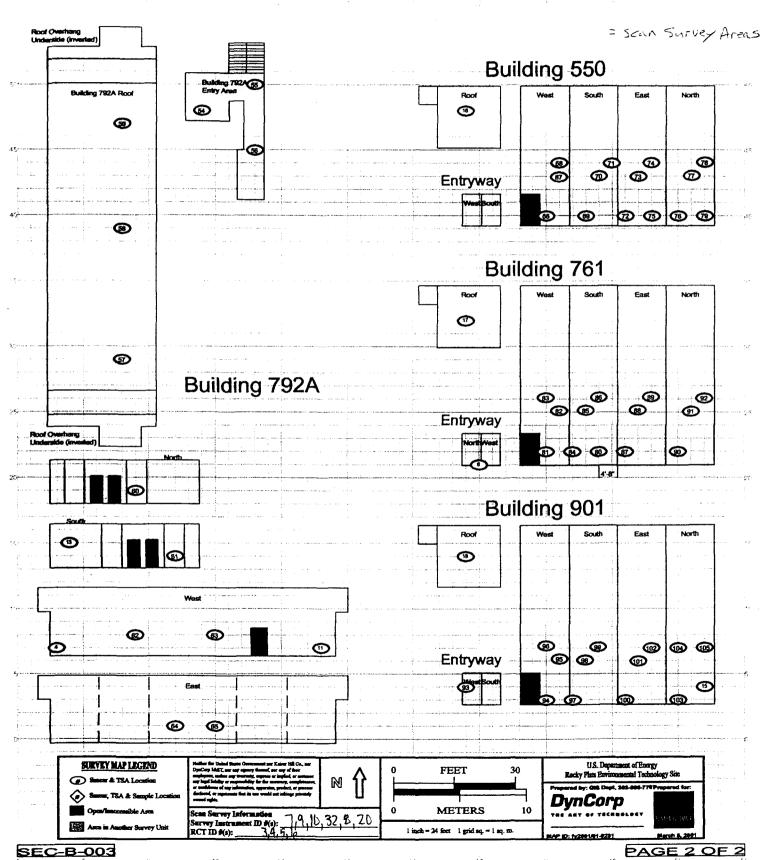

Survey Unit Description: Exteriors

Total Area: 2613 sq. m.

Total Floor Area: 137 sq. m.

Classification: 3

= Scan Survey Areas


F. . Z-DEMOLITION SURVEY FOR SECURITY CLUSIER

Survey Area: B Survey Unit: SEC-B-003 Building: 762, 762A, 792, 792A, 550, 761, 901 Survey Unit Description: Exteriors

Classification: 3

Total Area: 2613 sq. m.

Total Floor Area: 137 sq. m.

ATTACHMENT E

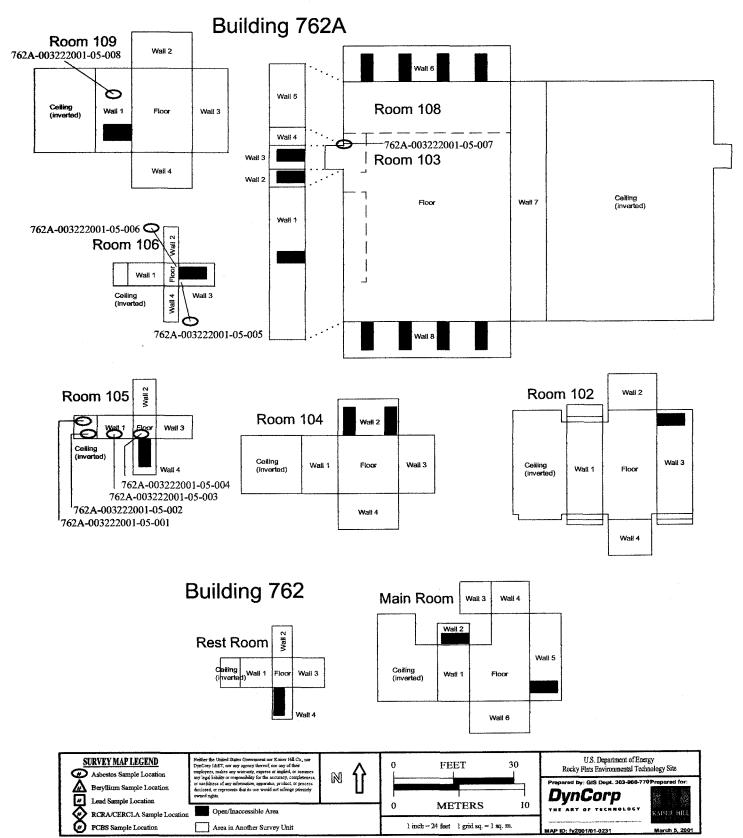
Chemical Data Summaries and Sample Maps

9.1..1.1.1 Asbestos Data Summary

762A-03222001-05-001	762A, 2' x 2' white ceiling tile with small groove & random dot – bathroom	Not Detected
762A-03222001-05-002	762A, 2' x 2' white ceiling tile with small groove & random dot – bathroom	Not Detected
762A-03222001-05-003	762A, Drywall & tape joint compound – bathroom	Not Detected
762A-03222001-05-004	762A, Beige linoleum – bathroom	Not Detected
762A-03222001-05-005	762A, Brown base cove with mastic (drywall paper stuck to sample) – janitor's closet	Not Detected
762A-03222001-05-006	762A, Beige linoleum – room 106	Not Detected
762A-03222001-05-007	762A, Drywall mud only – room 103	Not Detected
762A-03222001-05-008	762A, Drywall & tape joint compound - room 109	Not Detected
792A-03192001-05-001	792A, 2' x 2' white ceiling tile with large groove & random dot – janitor's closet	Not Detected
792A-03192001-05-002	792A, Yellow linoleum – janitor's closet	Not Detected
792A-03192001-05-003	792A, Yellow linoleum – janitor's closet	Not Detected
792A-03192001-05-004	792A, Base cove with yellow mastic (drywall paper stuck to sample) – janitor's closet	Not Detected
792A-03192001-05-005	792A, Drywall & tape joint compound – janitor's closet	Not Detected
792A-03192001-05-006	792A, Drywall & tape joint compound – entrance to janitor's closet	Not Detected
792A-03192001-05-007	792A, 2' x 2' white ceiling tile with large groove & random dot – bathroom	Not Detected
792A-03192001-05-008	792A, Caulk on exterior ducts (red painted beige) – exterior ducts on west side	Not Detected
792A-03192001-05-009	792A, Beige exterior sheeting with styrofoam beneath – exterior, west center	Not Detected
792A-03192001-05-010	792A, Beige exterior sheeting with styrofoam beneath – exterior, west side, south end	Not Detected
792A-03192001-05-011	792A, Beige exterior sheeting with styrofoam beneath – exterior, west side, north end	Not Detected
792-03202001-05-001	792, 2' x 2' white ceiling tile with small groove & random dot – bathroom	Not Detected
792-03202001-05-002	792, 2' x 2' white ceiling tile with small groove & random dot – bathroom	Not Detected
792-03202001-05-003	792, Drywall and tape joint compound – main doorway entrance	Not Detected
792-03202001-05-004	792, Drywall and tape joint compound – bathroom	Not Detected
792-03202001-05-005	792, Black base cove and mastic – bathroom entrance	Not Detected
792-03202001-05-006	792, Drywall and tape joint compound – exterior soffit on south end	Not Detected
901-03012001-05-001	901, Drywall and tape joint compound – SW corner	Not Detected
901-03012001-05-002	901, Drywall & tape joint compound - East wall	Not Detected
901-03012001-05-003	901, Drywall & tape joint compound West wall	Not Detected
901-03012001-05-004	901, Brown base cove mastic – SE corner	Not Detected
901-03012001-05-005	901, Brown base cove mastic - NW corner	Not Detected
901-03012001-05-006	901, Roof core sample – West end	Not Detected

Analytical Results	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	60% chrysotile in felt; 20%	chrysotile in tar	Trace chrysotile – point	count trace
Material Sampled & Location	901, Roof core sample – West end	901, Roof core sample – center	550, Drywall & tape joint compound - West wall	550, Drywall & tape joint compound - South wall	550, Drywall & tape joint compound - North wall	550, Brown base cove mastic – South wall	550, Gray window caulk – South window	550, Roof core sample	550, Roof core sample	761, Drywall & tape joint compound – North wall	761, Drywall & tape joint compound – East wall	761, Drywall & tape joint compound – West wall	761, Brown base cove mastic – Northeast corner	761, Gray window caulk – Southeast corner	761, Roof core sample	761, Roof core sample	762, Roof flashing core sample		762, Roof core sample	
Sample Number	901-03012001-05-006	901-03012001-05-007	550-03012001-05-001	550-03012001-05-002	550-03012001-05-003	550-03012001-05-004	550-03012001-05-005	550-03012001-05-006	550-03012001-05-007	761-03012001-05-001	761-03012001-05-002	761-03012001-05-003	761-03012001-05-004	761-03012001-05-005	761-03012001-05-006	761-03012001-05-007	762-03282001-05-001		762-03282001-05-002	

Survey Area: A

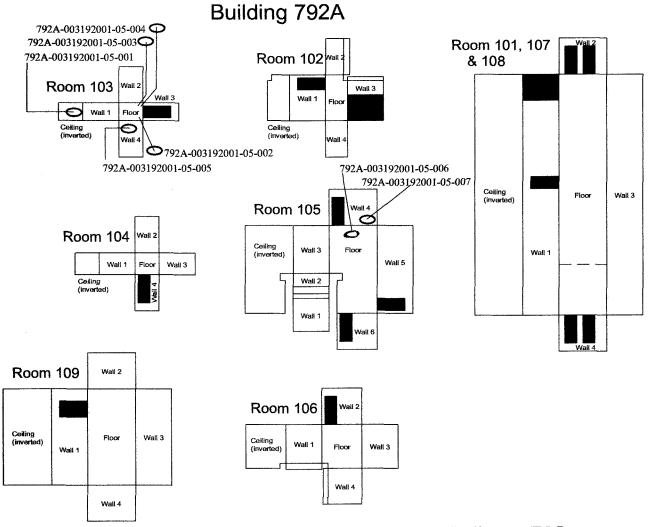

Survey Unit: SEC-A-001

Classification: N/A

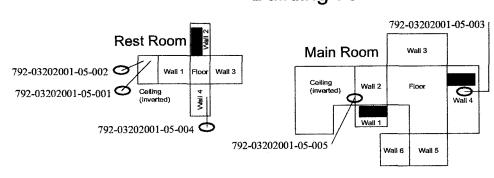
Building: 762, 762A, 792, 792A Survey Unit Description: Interiors

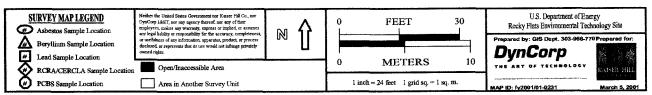
Total Area: 1820 sq. m.

Total Floor Area: 516 sq. m.


Survey Area: A

Survey Unit: SEC-A-001

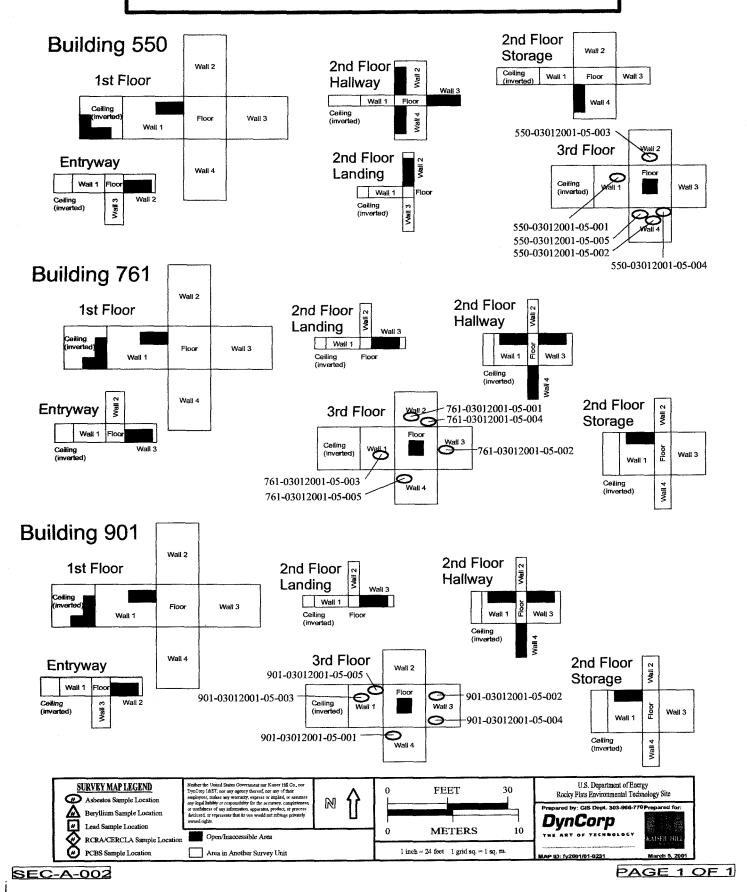

Classification: N/A


Building: 762, 762A, 792, 792A Survey Unit Description: Interiors Total Area: 1820 sq. m.

Total Floor Area: 516 sq. m.

Building 792

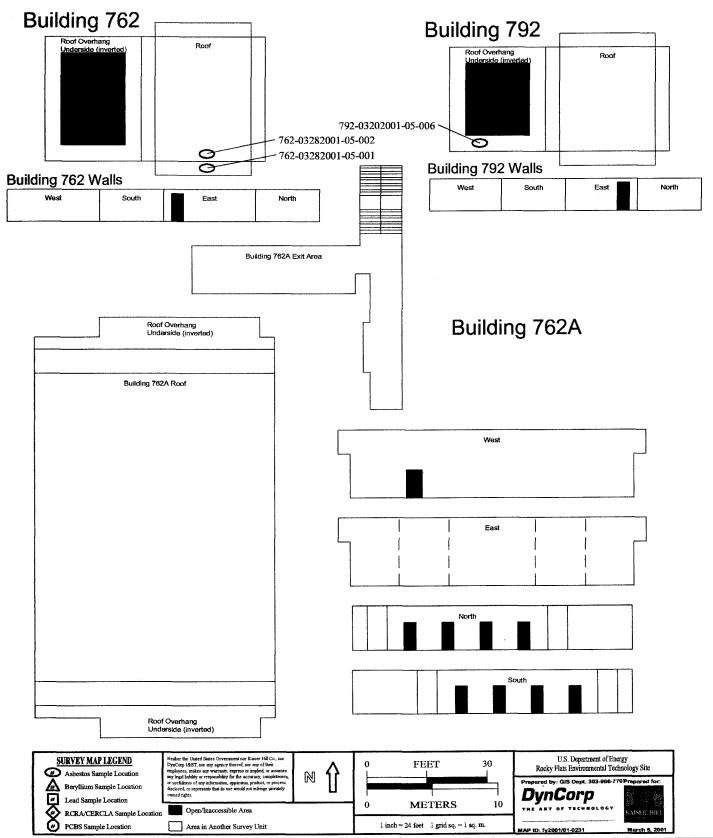
Survey Area: A


Survey Unit: SEC-A-002

Classification: N/A

Building: 550, 761, 901
Survey Unit Description: Interiors (1st floor < 8 ft.)

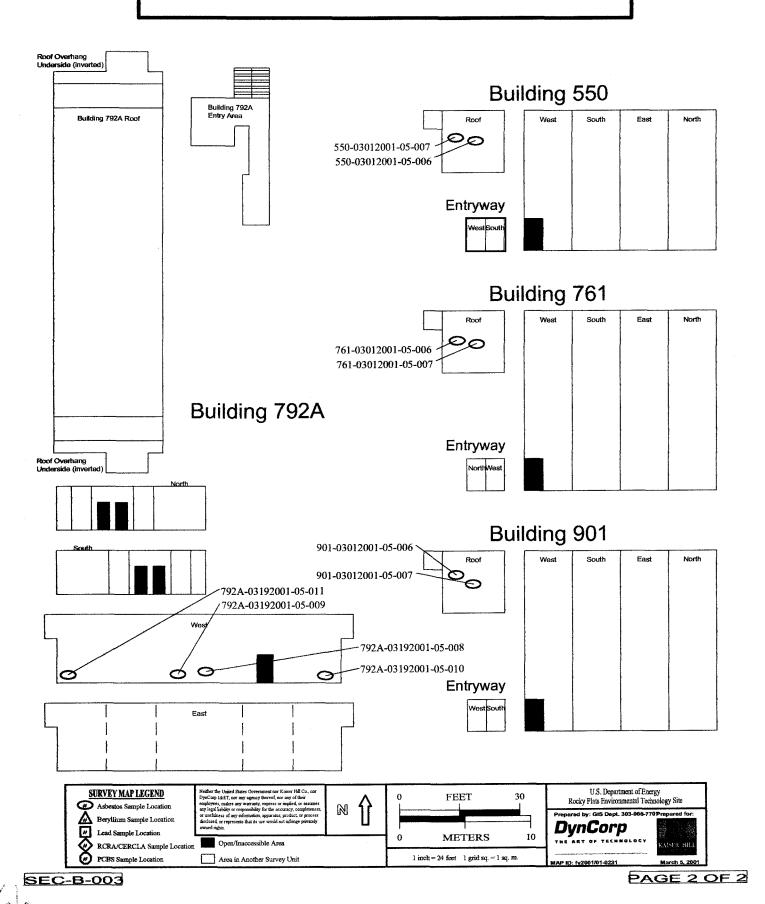
Total Area: 661 sq. m.


Total Floor Area: 86 sq. m.

Survey Area: B Survey Unit: SEC-B-003 Building: 762, 762A, 792, 792A, 550, 761, 901 Survey Unit Description: Exteriors Total Area: 2613 sq. m.

Total Floor Area: 137 sq. m.

Classification: N/A


SEC-B-003

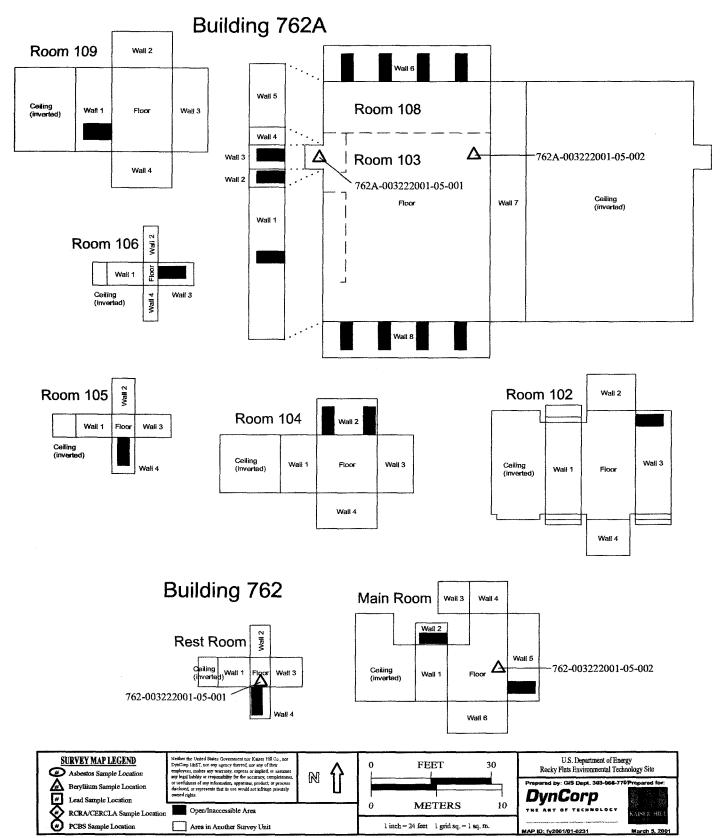
PAGE 1 OF 2

Survey Area: B Survey Unit: SEC-B-003 Building: 762, 762A, 792, 792A, 550, 761, 901 Survey Unit Description: Exteriors Total Area: 2613 sq. m.

Total Floor Area: 137 sq. m.

Classification: N/A

Beryllium Data Summary


Result (ug/100 cm²)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sample Location	901, Doorway of first floor	901, Window sill on third floor	761, Doorway of first floor	761, Landing on second floor	Field Blank	Field Blank	550, Doorway of first floor	550, Landing on second floor	762A, Entrance to utility closet	762A, East security turnstile	762, Bathroom	762, On top of radiator – east wall	792, Bathroom	792, Top of electrical panel	792A, North doorway	792A, South doorway
Sample Number	901-03132001-05-001	901-03132001-05-002	761-03132001-05-001	761-03132001-05-002	761-03132001-05-003	761-03132001-05-004	550-03132001-05-001	550-03132001-05-002	762A-03222001-05-001	762A-03222001-05-002	762-03222001-05-001	762-03222001-05-002	792-03202001-05-001	792-03202001-05-002	792A-03222001-05-001	792A-03222001-05-002

Survey Unit: SEC-A-001

Classification: N/A

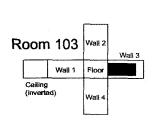
Survey Area: A Survey Ut Building: 762, 762A, 792, 792A Survey Unit Description: Interiors Total Area: 1820 sq. m.

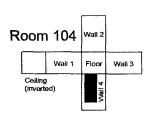
Total Floor Area: 516 sq. m.

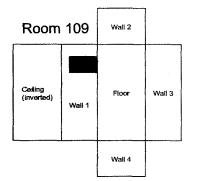
SEC-A-001

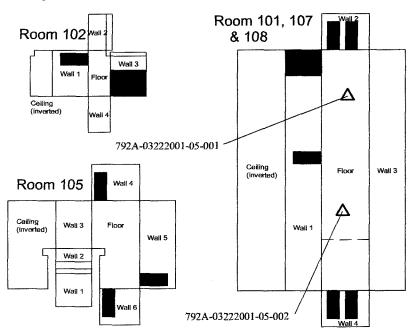
urvey Area: A Survey Unit: SEC-A-001

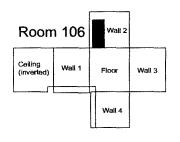
Building: 762, 762A, 792, 792A Survey Unit Description: Interiors

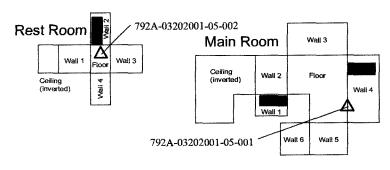

Survey Unit Description: Interiors
Total Area: 1820 sq. m.

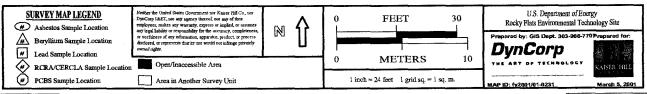



Classification: N/A

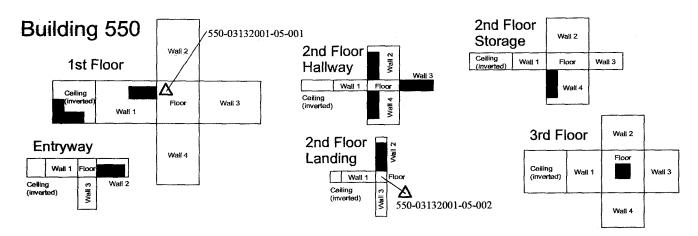

Total Floor Area: 516 sq. m.

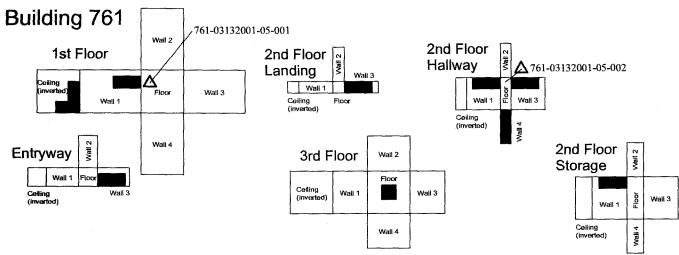

Building 792A

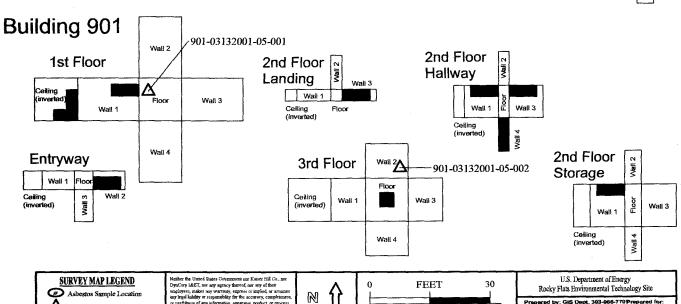


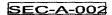


Building 792


Survey Area: A


Survey Unit: SEC-A-002


Classification: N/A


Survey Unit Description: Interiors (1st floor < 8 ft.)
Total Area: 661 sq. m. Total F

Total Floor Area: 86 sq. m.

Beryllium Sample Location

RCRA/CERCLA Sample Loca

Open/Inaccessible Area

Area in Another Survey Unit

Lead Sample Location

PCBS Sample Location

DynCorp

MAP ID: fy2001/01-0231

10

METERS

1 inch = 24 feet 1 grid sq. = 1 sq. m.

ATTACHMENT F

Decommissioning Waste Types and Volume Estimates

Attachment F - Decommissioning Waste Types and Volumes Estimates

Other Waste (cu ft)	Glass – 67 Insulation – 75	Glass – 67 Insulation – 75	Glass – 67 Insulation – 75	Glass – 20 Insulation – 311 Acoustical Tile – 24	Glass – 15 Ridged Insulation – 1211 Fiberglass Insulation – 1687 Acoustical Tile – 203 Raised Floor Panels – 52	Glass – 20 Insulation – 272 Acoustical Tile – 20	Glass – 7 Ridged Insulation – 545 Fiberglass Insulation – 759 Acoustical Tile – 91
ACM (sq. ft)	None	None	None	Roof Flashing - 193	None	Roof Flashing - 193	None
Wall Board' (cu ft)	4	4	4	50	410	44	185
Corrugated/ Sheet Metal ¹ (cu ft)	None	None	None	None	None	None	None
Metal' (cu ft)	75	100	100	S	1500	ς.	675
Wood ¹ (cu ft)	None	None	None	None	None	None	None
Concrete¹ (cu ft)	1,874	2121	2121	1069	6929	968	3118
Facility	550	761	901	762	762A	792	792A

(1) Materials are assumed to be PCB Bulk Product Waste.

ATTACHMENT G

Data Quality Assessment (DQA) Summary Tables

Table G-1. Sampling & Analysis Completeness Summary

Comments (RIN, Analytical Method, Qualifications, etc.)	40 CFR 763.86 5 CCR 1001-10 EPA 600/R-93/116 ("none" is <1% by volume)	RIN 01D0630 OSHA ID-125G No results above action level ($0.2\mu g/100cm^2$) or investigative level ($0.1 \mu g/100cm^2$).	No results above DCGL _w or DCGL _{EMC} action level (20 dpm/100cm ² removable, 100 dpm/100cm ² average, and 300 dpm/100cm ² maximum.		
Project Decisions (Conclusions) & Uncertainty	None none none ACM ACM ACM (762 inference) None none	No contamination at any location	No contamination at any location above the action levels		
# Taken (Real & QC Samples) ^B	5 (int) 2 (ext) 5 (int) 2 (ext) 5 (int) 2 (ext) 2 (ext) 5 (int) 1 (ext) 8 (int) 7 (int) 4 (ext)	14 reals, 2 blanks 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	60 TSA & Smears (random + biased) 3 QC TSA 10% Scan	45 TSA & Smears (random + biased) 3 QC TSA 10% Scan	105 TSA & Smears (random + biased) 6 QC TSA 10% Scan
# Samples Required (incl. Media; Real & QC Samples)	(biased/reals) 10 10 10 11 11 24 24	14 (total, biased, reals) 2 2 2 2 2 2 2 2 2 2 2 2	60 TSA & Smears (random + biased) 3 QC TSA 10% Scan	45 TSA & Smears (random + biased) 3 QC TSA 10% Scan	105 TSA & Smears (random + biased) 6 QC TSA 10% Scan
ANALYTE	Asbestos ^A Bldg 550 Bldg 761 Bldg 901 Bldg 762 Bldg 792 Bldg 762 Bldg 792 Bldg 762 Bldg 762	Beryllium (swipes) • Bldg 550 • Bldg 761 • Bldg 901 • Bldg 762 • Bldg 792 • Bldg 792	Radiological Survey Unit: SEC-A-001	Survey Unit: SEC-A-002	Survey Unit: SEC-B-003

A # of samples required is estimate only, based on miscellaneous material types; final # of samples at discretion of IH

 $^{\rm B}$ int – building interior, ext – building exterior

Table G-2, Security Cluster, PDS Compliance with MARSSIM Data Quality Guidelines.

Security Cluster RLCR	Inventory of Report & Project File	Reconnaissance-Level Characterization Rpt	Executive Summary	Sec 1.0 Introduction	3.0 F	Attach. G Data Quality Assessment	Attach. A , B, & D (Survey Results, Maps, Data)	Radiological Characterization Package	Survey Packages SEC-A-001, -002, & -003	Summary Package Cover Sheets	(MARSSIM) PreSurvey Calculation Worksheets	Sampling & Survey Instructions	Total Surface Activity Data Sheets	Removable Contamination Sheets	Instrument Data Sheets	Survey Signatures	Grid Survey Maps	(MARSSIM) PostSurvey Verification worksheets	Lab Results (not applicable)	Chain-of-Custody	Programmatic QA Records	Calibrations & Reference (Source) Standards	Sensitivity (MDC) determinations	Periodic Performance Checks	GSUG/GD/B/GDUG
		ų	ımmary	duction	lazards	ssment	s, Data)			Sheets	sheets	ructions"	Sheets	Sheets	Sheets	natures	y Maps	ksheets	licable)	Sustody		ındards	inations	Checks	dSUd/c
63 36 HE STA	×			ļ																					×
138 M. C.	×											×							\Box						-
	÷			\vdash	\vdash	-		×	\vdash	H	H		\vdash		\dashv	\dashv	\dashv		\dashv		Н	7	\dashv		-
	×			-	<u> </u>	_		-		L	×		×		_	+	4	4	4		Ц	×	_	×	L
	×					×											1	×	1	×					
	×					ا بر											4								
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	88388			×	ļ.,,	×																			
10 (10) 10	×			L	_	L		_	L		Н		Ц		\sqcup	×	_	4	4				_		L
	×			\vdash	L	×	L	\vdash	\sqcup		Н			\dashv	\dashv	-	$\stackrel{\times}{+}$		\dashv		Н		\dashv		L
16 16 16 16 16 16 16 16 16 16 16 16 16 1	×		×	H	_	×	H	-	\vdash	\vdash	H				-			-					Н		L
																	4								
0; 30 0; 30	×	X	X						×																
	×	×																							
	×			Г	Γ						H										×	X	×	×	l
(×					×	f				×		×	×	×		+		\dashv						-
/ / 5/ 2/ 8/	×		×	H	H	-	×	-	\vdash	×	Н		Н		\dashv		\dashv	+	-	×	_		Н	×	H
1 18 (6) (6) (18)	×			\vdash	_	-	L	_	×		Н				Ц		4		_				×	×	-
	×	X		L			×		X	X	×	X	X	X	×	×	×	X		X	X	ΙX	X	X	L
	×						×										×								
	×	×		H		-		-		×	Н				H		\dashv		-						H
1 / 1/2/ 3/ 3/	×	_	×	H	-	×		H	H		Н		H		\dashv		+		\dashv		Н			^	\vdash
	×												×	×			4	4						×	
Tage of the later	×		×			×																			
	×	×	×		×	×												1							
. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						I																			
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	×			-	H	×		\vdash	-	H	Н		×		H	\exists	+	1		×			\vdash	_ ×	-
1/4/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	×					Ĺ	Ĺ				Ц		Ц				1	×							Ĺ
1 /3 4 4 4 3 4 4 4	×					×			×		×														
10 10 10 10 10 10 10 10 10 10 10 10 10 1	×							×			П						1	7							Γ
1 8 1 8 1 8 1 8 1																									

